Fund Project:Project supported by the National Basic Research Program of China (Grant No. 2018YFB0605101-1).
Received Date:02 November 2018
Accepted Date:30 January 2019
Available Online:01 May 2019
Published Online:05 May 2019
Abstract:Flow system on a nano scale, as an effective and economic system, has been widely employed. While on a macroscopic scale, for the non-slip boundary, the velocity of the fluid at the surface is assumed to be consistent with the surface. This approximation may become invalid on a smaller length scale pertinent to the operation of microfluid devices. The interface slip effect has a significant influence on the flow because of its higher ratio of surface to volume. In this paper, the Poiseuille flow, which is composed of two infinite parallel asymmetric walls, is studied by the molecular dynamics method. The influence of wall roughness and surface wettability of channel on fluid flow in the channel are analyzed. The results show that the asymmetric upper and lower wall can lead to an asymmetric distribution of flow parameters. The change of wall roughness and wettability would affect the flow characteristics of fluid atoms near the wall. Due to the influence of wall grooves, the number density distribution near the rough wall is lower than that on the smooth wall side. As the rib height and wall wettability increase, the number density of fluid atoms in the groove increases gradually, and the change of the rib spacing does not substantially affect the number density distribution of fluid atoms near the rough wall. For different structure types of walls, the real solid-liquid boundary positions are determined by simulating the velocity field distribution in the channel under both Couette flow and Poiseuille flow, which can help us to better analyze the interface slip effect. The variation of wall roughness and wettability can affect the position of the solid-liquid interface. The change of rib height and wettability can greatly influence the velocity distribution in channel, and the position of the solid-liquid boundary as well. Conversely, the rib spacing has a less effect on the boundary position. The difference in boundary position can affect the interface slip effect. We can find the slip velocity and the slip length on one side of the rough wall to be smaller than those on the smooth wall side, and as the rib height and wall wettability increase, the slip velocity and the slip length significantly decrease near the rough wall side. The effect of rib spacing on fluid flow is trivial, and the interface slip velocity and length are relatively stable. Keywords:roughness/ wettability/ interface slip/ molecular dynamics
为研究肋高变化对近壁区流体数密度的影响, 固定肋间距$a = 3.6\sigma $不变, 分别取肋高$h = 0.5\sigma ,$$1.0\sigma ,1.5\sigma ,2.0\sigma $, 研究微通道内流体流动数密度分布曲线规律. 如图4所示, 横坐标为沿y方向的高度, 纵坐标为无量纲数密度$\rho * = \rho {\sigma ^3}$. 由图4可知, 由于壁面效应使得近壁区流体原子分布不均匀, 近壁区域流体数密度分布出现明显的振荡现象, 而通道主流区域流体受壁面影响较小, 数密度分布基本保持恒定. 由于通道壁面形状的不对称, 导致流场中数密度分布的不对称, 由图4(a)和图4(b)所示, 光滑壁面附近流体的数密度波动幅度要大于粗糙壁面, 且呈现逐渐衰减趋势. 通过改变肋高h来改变壁面粗糙度, 实现不同粗糙表面构造. 图4(a)结果显示, 当h较小时, 近壁区流体数密度波动呈现逐渐衰减趋势, 但随着肋高的增大, 近壁区流体数密度分布出现一次回升现象, 这是由于凹槽内的壁面与切面处的壁面对流体均有影响, 导致数密度分布呈现衰弱、增强、再衰弱的趋势. 为研究肋间距a变化对通道内流体数密度分布的影响, 固定肋高$h = 2.0\sigma $不变, 分别取长度$a = 2.7\sigma ,\;3.6\sigma ,\;4.5\sigma ,$$5.4\sigma $, 结果如图5所示. 由图5(a)和图5(b)可知, 纳米通道内流体在不同肋间距下数密度的振荡周期一致, 肋间距a变化对近壁区数密度影响较小. 因此, 可认为肋间距a的变化基本不影响壁面粗糙度对流体数密度分布. 图 4 肋高h对壁面附近流体数密度分布的影响 (a)粗糙壁面; (b)光滑壁面 Figure4. Effect of rib height h on the distribution of fluid number density near wall surface: (a) Rough wall surface; (b) smooth wall surface.
图 5 肋间距a对壁面附近流体数密度分布的影响 (a)粗糙壁面; (b)光滑壁面 Figure5. Effect of rib spacing a on the distribution of fluid number density near wall surface: (a) Rough wall surface; (b) smooth wall surface.
图 7 不同肋高h下滑移长度标准差分布 Figure7. Standard deviation distribution of slip length with different rib height h.
图 8 (a) 肋高h对滑移长度的影响; (b) 肋高h对滑移速度的影响 Figure8. (a) Effect of rib height h on the slip length; (b) effect of rib height h on the slip velocity.
图 9 不同肋间距a下流体沿y方向的速度分布 (a) Couette流动; (b) Poiseuille流动 Figure9. Velocity profiles in the y-direction with different rib spacing a: (a) Couette flow; (b) Poiseuille flow.
图 10 不同肋间距a下滑移长度标准差分布 Figure10. Standard deviation distribution of slip length with different rib spacing a.
图 11 (a) 肋间距a对滑移长度的影响; (b) 肋间距a对滑移速度的影响 Figure11. (a) Effect of rib spacing a on the slip length; (b) effect of rib spacing a on the slip velocity.
24.2.壁面润湿性变化对流动特性的影响 -->
4.2.壁面润湿性变化对流动特性的影响
34.2.1.壁面润湿性变化对数密度的影响 -->
4.2.1.壁面润湿性变化对数密度的影响
壁面润湿性决定了固体壁面与流体间的相互作用, 不仅会影响固液界面处动量的传递, 也会改变近壁区流体原子的分布状态[25]. 为研究壁面润湿性对微通道内流动的影响, 固定凹槽高度$h = 2.0\sigma $, 长度$a = 3.6\sigma $, 对势能系数c = 1.0, 0.75, 0.5, 0.25下流体在通道内的流动特性分别进行研究. 图12为不同润湿性下对应的通道内流体数密度分布, 由图12可知, 无论是粗糙壁面还是光滑壁面, 壁面与流体间的作用力越强, 壁面润湿性越好, 壁面附近吸附的流体原子数量越多, 近壁区流体的数密度均随着势能系数的增大而增大. 对于粗糙壁面, 当固液界面间的势能系数c ≤ 0.5时, 随着固液间势能系数c的减小, 凹槽内流体原子的数密度有所下降, 但下降幅度小于光滑壁面, 且凹槽内流体数密度要大于切面附近. 而当固液间的势能系数c = 0.25时, 对应的接触角最大, 凹槽内流体原子的数密度明显减少, 如图12(a)所示, 凹槽内的数密度波动峰值要低于切面附近, 说明此时凹槽对流体原子几乎处于排斥状态. 图 12 势能系数c对壁面附近流体数密度分布的影响 (a)粗糙壁面; (b)光滑壁面 Figure12. Effect of energy coefficient c on the distribution of fluid number density near wall surface: (a) Rough wall surface; (b) smooth wall surface.
34.2.2.壁面润湿性变化对速度分布的影响 -->
4.2.2.壁面润湿性变化对速度分布的影响
图13为势能系数c变化对两种流动状态下通道内速度分布的影响. 结果显示, 随着势能系数c的增大, 固液原子间的作用力逐渐增强, 两种流动状态下速度分布呈现相反的变化趋势. 如图13(a)所示, Couette流动中通道内的速度分布随着势能系数c的增大而增大, 而图13(b)显示Poiseuille流动中通道内的速度分布随势能系数c的增大而减小. 另外值得一提的是, 对于Couette流动来说, 粗糙壁面附近流体速度变化幅度要大于光滑壁面一侧, 而Poiseuille流动则刚好相反. 图14为不同势能系数c下滑移长度标准差分布. 图15(a)和图15(b)分别为Poiseuille流动中通道内的滑移速度及滑移长度分布, 可以发现, 随着势能系数c的增大, 无论是光滑壁面还是粗糙壁面, 滑移速度和滑移长度分布均逐渐降低. 通过分析可知, 改变势能系数c会影响通道内的速度分布, 使水动力位置发生变化, 并对边界滑移影响较大. 图 13 不同势能系数c下流体沿y方向的速度分布 (a) Couette流动; (b) Poiseuille流动 Figure13. Velocity profiles in the y-direction with different energy coefficient c: (a) Couette flow; (b) Poiseuille flow.
图 14 不同势能系数c下滑移长度标准差分布 Figure14. Standard deviation distribution of slip length with different energy coefficient c.
图 15 (a) 势能系数c对滑移长度的影响; (b) 势能系数c对滑移速度的影响 Figure15. (a) Effect of energy coefficient c on the slip length; (b) effect of energy coefficient c on the slip velocity.