1.Key Laboratory of Sensor and Sensing Technology of Gansu Province, Institute of Sensor Technology, Gansu Academy of Sciences, Lanzhou 730000, China 2.State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China 3.Institute of Nano-materials Application Technology, Gansu Academy of Sciences, Lanzhou 730000, China 4.Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
Fund Project:Project supported by the Open Foundation of State Key Laboratory of Electronic Thin Films and Integrated Devices, China (Grant No. KFJJ201703), the National Natural Science Foundation of China (Grant No. 51772047), the Fund for Less Developed Regions of the National Natural Science Foundation of China (Grant Nos. 51761001, 51665003, 21864003), the Natural Science Foundation of Gansu Province, China (Grant No. 17JR5RA180), the Lanzhou Talent Innovation and Entrepreneurship Project, China (Grant No. 2016-RC-80), and the 2018 "Western Young Scholars" Project.
Received Date:12 December 2018
Accepted Date:14 March 2019
Available Online:01 June 2019
Published Online:05 June 2019
Abstract:The phase transition law of Fe-N system is very important for efficiently synthesizing single-phase γ'-Fe4N thin films. The γ"-FeN thin films are deposited on silicon wafers via DC reactive magnetron sputtering; some of them are stripped from the silicon wafers and measured by using the synchronous thermal analysis (TG-DSC) for studying the phase transition law of Fe-N system. The results of TG-DSC show that at a heating rate of 10 ℃/min, the Fe-N system has five phase transitions in a temperature range between room temperature (RT) and 800 ℃, i.e. I (330?415 ℃): γ''-FeN→ξ-Fe2N with an endothermic value of 133.8 J/g; II (415?490 ℃): ξ-Fe2N→ε-Fe3N with no obvious latent heat of phase change; III (510?562 ℃): ε-Fe3N→γ'-Fe4N with an exotherm value of 29.3 J/g; IV (590?636 ℃): γ'-Fe4N→γ-Fe with an exotherm value of 42.6 J/g; V (636?690 ℃): γ-Fe→α-Fe with an endothermic value of 14.4 J/g. According to the phase transition law of Fe-N system, the crystal phase of iron nitride thin film is effectively regulated by vacuum annealing. The x-ray diffraction pattern (XRD) results show that the iron nitride thin film obtained by direct-sputtering in pure N2 is a single-phase γ"-FeN film, and it becomes a single-phase ξ-Fe2N film after being annealed at 350 ℃ for 2 h, a single-phase ε-Fe3N film after being annealed at 380 ℃ for 2 h, and a single-phase γ'-Fe4N film after being annealed at 430 ℃ for 7 h. The annealing temperature for the phase transition of Fe-N thin film is generally lower than that predicted by the TG-DSC experimental results, because it is affected by the annealing time too, that is, prolonging the annealing time at a lower temperature is also effective for regulating the crystal phase of Fe-N thin film. The magnetic properties of the Fe-N thin film are also studied via vibrating sample magnetometer (VSM) at room temperature. The γ'-Fe4N polycrystalline thin film shows an easy-magnetized hysteresis loop for the isotropic in-plane one, but a hard-magnetized hysteresis loop with a large demagnetizing field for the out-of-plane one, which belongs to the typical magnetic shape anisotropy. However, their saturation magnetizations are really the same (about 950 emu/cm3) both in the plane and out of the plane. Keywords:semi-metal/ crystal structure/ simultaneous thermal analysis/ magnetic anisotropy
全文HTML
--> --> -->
3.结果与讨论溅射得到的氮化铁薄膜的AFM图谱(5 μm × 5 μm)如图2所示, 其均方根表面粗糙度(RMS)仅为1.1 nm, 表明制备的氮化铁薄膜表面平整度很高, 对后期的应用十分有利. 图 2 溅射得到的氮化铁薄膜的AFM图谱 Figure2. AFM spectrum of the iron nitride film obtained by sputtering.
氮化铁薄膜经不同温度退火2 h前后的XRD图谱如图3所示. 图3(a)中仅有一个衍射峰, 对应于立方相的γ''-FeN (JCPDS, No. 88-2153), 表明直接溅射得到的氮化铁薄膜是单相的γ''-FeN. 经250 ℃退火2 h后, 样品的晶相保持不变, 但半峰宽变窄, 表明样品结晶性变好. 当退火温度提高到350 ℃时, 衍射峰位置和相对强度都发生了明显改变, 对应于六角相ξ-Fe2N (JCPDS, No. 89-3939), 表明样品的晶相已经完全转变成单相的ξ-Fe2N. 继续升高退火温度到380 ℃时, 样品的衍射峰表现出整体向右平移, 对应于六角相的ε-Fe3N (JCPDS, No. 83-0876), 此时样品的晶相完全由ε-Fe3N构成. 当退火温度继续升高到400 ℃时, 衍射峰的位置继续右移, 原对应于ε-Fe3N (JCPDS, No. 83-0876)的衍射峰变成对应于ε-Fe3N (JCPDS, No. 83-0879). 因为ε-Fe3N相实际上应该写成ε-Fe3–xN (0 ≤ x < 1), 根据x (N含量)不同, ε-Fe3–xN相衍射峰的位置不同, 而且衍射峰右移表明样品中的N含量在减少. 此外, 400 ℃退火的样品在41.2°附近出现了新的衍射峰, 对应于立方相的γ'-Fe4N (JCPDS, No. 83-0875), 表明此时样品中的Fe/N (原子比)已经大于3/1. 进一步提高退火温度到450 ℃时, 对应于γ'-Fe4N相的衍射峰的相对强度明显增强, 其最强峰(111)与对应于ε-Fe3N相的最强峰(111)的峰强几乎相等, 表明样品中γ'-Fe4N相和ε-Fe3N相的比例已经接近1∶1. 图 3 不同温度退火2 h前后的氮化铁薄膜的XRD图谱 Figure3. XRD patterns of iron nitride films before and after annealing at different temperatures for 2 hours.
根据文献[21]报道, Fe-N转变成γ'-Fe4N的温度是427 ℃, 然而我们对γ''-FeN相的氮化铁薄膜在450 ℃退火2 h得到的样品却是γ'-Fe4N和ε-Fe3N的混合相, 其Fe∶N (原子比)显然小于4∶1. 为了获得单相的γ'-Fe4N薄膜, 我们不得不考虑延长退火时间, 而退火温度就选择比文献报道略高的430 ℃. γ'-FeN薄膜在430 ℃退火不同时间的XRD图谱如图4所示(注: 该图的数据与我们前期发表的文章[29]的Fig.3(c)相同). 当430 ℃退火时间为0 h (保温时间 < 1 min), 所有的衍射峰都对应于ε-Fe3N (JCPDS, No. 73-2101), 是单相的ε-Fe3N; 延长退火时间至3 h, 样品为ε-Fe3N和γ'-Fe4N的混合相; 进一步延长退火时间到7 h, ε-Fe3N相已完全消失, 只留下γ'-Fe4N相, 表明γ''-FeN薄膜经430 ℃退火7 h可以完全转变成单相的γ'-Fe4N, 符合实验预期; 同时也说明γ'-Fe4N在Fe-N体系多种亚稳相中是相对比较稳定的, 其居里温度高达767 K[30]. 图 4 430 ℃退火不同时间的氮化铁薄膜的XRD图谱[29] Figure4. XRD pattern of iron nitride films with different annealing time at 430 ℃[29].
根据XRD的结果, 对于氮化铁(γ''-FeN)薄膜, 随着退火温度的升高, Fe-N体系中的N含量将持续减少, 并且这种组分的变化导致了晶相的改变, 其晶相转变的方向是γ''-FeN→ξ-Fe2N→ε-Fe3N→γ'-Fe4N, 这符合Fe-N体系相图[24], 也与Widenmeyer等[27]热分析的结果基本一致. 为了进一步明确退火诱导Fe-N体系晶相合成的机制, 把溅射得到的约180 nm厚的γ''-FeN薄膜从硅基底上剥离下来, 并进行了TG-DSC同步热分析(升温速率10 ℃/min, Ar气氛), 结果如图5所示. 在330 ℃之前, TG曲线(粗实线)处于平台期, 质量仅缓慢减少了1.36%, 还不足以引起γ''-FeN薄膜晶相的改变. 从330 ℃开始至690 ℃为止, TG曲线中出现了5级较明显的台阶, 反映在其一阶导数, 即DTG曲线(虚线)上就是5个波谷: I (330—415 ℃), II (415—490 ℃), III (510—562 ℃), IV (590—636 ℃), V (636—690 ℃), 表明样品经历了5次晶相转变(相变)过程. 在690 ℃之后, TG曲线再次处于平台期, 质量不再减少, 表明样品中的N已经完全析出, 仅剩下熔沸点较高的Fe. 根据文献[27], 对于Fe-N体系, 样品在低于800 ℃的加热过程中, 其所有质量的减少都来源于N的析出: Fe-N→Fe+N2 (气体). 值得注意的是, γ''-FeN薄膜中的N是在330 ℃以后才开始快速析出, 也就是说要想在有限的时间内通过对Fe-N体系进行热处理的方式得到低氮相的氮化铁薄膜材料, 如γ'-Fe4N薄膜(前期我们曾对Fe1.8N薄膜在375 ℃退火24 h得到了单相的γ'-Fe4N[29]), 那么退火温度应该高于330 ℃. 图 5 氮化铁薄膜的TG-DSC曲线(虚线为DTG, 是TG的一阶导数) Figure5. TG-DSC curves of iron nitride film (dotted line is DTG, which is the first derivative of TG).
虽然TG (DTG)曲线显示样品在RT—800 ℃共经历了5次相变过程, 然而在DSC曲线(细实线)上却仅有4个波峰(或波谷), 分别对应于I, III, IV, V这4个相变过程, 其中I和V是吸热过程, III和IV是放热过程. 为了弄清相变过程II为何在DSC曲线上没有体现, 截取TG曲线中相变发生前后的关键节点, 分析统计样品的化学组分、主要晶相和晶型等要素, 列于表1中. 其中化学组分依据样品中Fe和N的质量分数来确定, 并以690 ℃时质量共减少的22.5%为N的总含量, 余下的77.5%为Fe的总含量为基准. 根据表1的结果, TG曲线中5级台阶代表的5个相变过程分别为:
温度/℃
化学组分
主要晶相
晶型
330
FeN1.1
γ''-FeN
立方
415
Fe2N1.3
ξ-Fe2N
六角
490
Fe3N1.4
ε-Fe3N
六角
510
Fe3N1.3
ε-Fe3N
六角
562
Fe4N
γ'-Fe4N
立方 (Fe构成面心立方, N位于体心)
590
Fe4N0.7
γ'-Fe4N
立方
636
Fe4N0.37
γ-Fe
面心立方
690
Fe
α-Fe
体心立方
表1TG-DSC曲线关键节点处Fe-N的化学组分、主要晶相和晶型 Table1.Chemical composition, main crystal phase, and crystal form of the Fe-N at key nodes of the TG-DSC curve.