Abstract:Graphene is a kind of two-dimensional material with high light transmittance, high mechanical properties and high carrier mobility. The energy band of graphene can be turned by doping and electric field. Researches on the application of graphene to electronic devices focused on field effect transistors. For improving the performance, one generally improves the fabrication process and device structure, but many researchers chose to change the material or structure of dielectric layer. Ion-gel is a kind of mixture of organic polymer mesh structure with good thermal stability and high dielectric value, prepared by macromolecule organic polymer and ionic salt electrolyte material. With the effect of electric field, cations and anions in ion-gel diffuse to form a double charge layer distribution with a charge layer on the surface of material. This capacitance characteristic is similar to that of traditional capacitor. In this paper, ion-gel (PVDF-[EMIM]TF2N) film is used as a dielectric layer material to prepare the bottom-gate graphene-based?field?effect?transistor (GFET), which is compared with the GFET with SiO2 bottom-gate, according to electrical characteristic curves. The effect of the ion-gel film on the transconductance, switching ratio and Dirac voltage of the GFET are analyzed. The effect of the vacuum environment and temperature on the GFET performance with ion-gel film gate are also investigated. The results show that in the room-temperature environment, the switching ratio and transconductance of the ion-gel film gate GFET device increase to 6.95 and 3.68 × 10–2 mS, respectively, compared with those of the SiO2 gate GFET, while the Dirac voltage decreases to 1.3 V. The increase in transconductance and switching ratio of ion-gel film gate GFETs are mainly due to the high capacitance of ion-gel film compared with those of conventional SiO2 gate dielectrics. There will be more carriers inside the graphene while in the carrier accumulation region of GFET transfer characteristic curve, which makes graphene more conductive. The Dirac voltage of ion-gel film gate GFET can be reduced to 0.4 V in the vacuum environment; as the temperature increases, the transconductance of GFET can increase up to 6.11×10–2 mS. The results indicate that the ion-gel film-based graphene field effect transistor shows good electrical properties in serving as high dielectric constant organic dielectric materials. Keywords:graphene/ ion-gel film/ field effect transistor/ electrical properties
全文HTML
--> --> --> 1.引 言作为一种具有高透光性、高机械性能和高载流子迁移率特性的二维材料, 石墨烯备受关注[1,2], 通过掺杂和外加电场等方法打开石墨烯的能带、改变石墨烯的能级可影响其电学特性[3-5]. 针对石墨烯应用于电子器件的研究, 更多地集中于场效应晶体管(filed-effect transistor, FET)领域. Lemme等[6]于2007年研究制备出第一个石墨烯场效应晶体管(graphene-based field effect transistor, GFET), 属于典型的顶栅型场效应管结构[7]. 对于GFET性能的改进一般会针对制备工艺、GFET器件结构等方面进行研究, 其中通过减小石墨烯纳米带宽度至10 nm, 可提高GFET开关比(Jon/Joff)至1 × 10–6左右, 但石墨烯纳米带中载流子迁移能力会大幅降低而且制备难度大幅度提高[8]. 所以很多研究开始通过改进介质层材料来提高GFET性能. 最早的底栅型GFET是以硅片为基底, 表面的SiO2层作为栅极介质层, 由于SiO2材料的低介电特性, 器件的狄拉克电压普遍偏高, 例如Echtermeyer等[9]研究的SiO2栅介GFET的狄拉克电压基本在10 V以上; Shih等[10]制备的SiO2栅介GFET狄拉克电压最低为12 V, 最高达到50 V. 通过采用高介电常数介质材料可提高载流子浓度和迁移率, 从而降低狄拉克电压、增加跨导. Fallahazad等[11]利用Al2O3作为栅介材料制备双栅压GFET, 其狄拉克电压低至0.1 V左右; Wang等[12]将SiO2与HfO2叠加作为复合栅介层, 制备出的GFET跨导最高达到0.6 mS; 吴春艳等[13]制备出以Al2O3/HfO2作为顶栅介质层的GFET狄拉克电压低至0.2 V并应用于生物传感器. 除了选择无机材料作为介质层外, 也有研究利用同样具有高介电常数的离子凝胶作为介质层材料来改善GFET电学性能[14,15]. 离子凝胶(ion-gel)是一种具有离子导电性的固态混合物, 具有很好的热稳定性和电导性. 在外电场作用下离子凝胶内部发生电荷不均匀分布, 与外部绝缘层表面的电荷层形成双电荷层分布, 这种结构可用古伊-查普曼-斯特恩(Gouy-Chapman-Stern, GCS)模型来解释(图1), 介电层中的离子和外部绝缘层表面电荷之间的附着主要依靠静电作用[16]. 双电层和传统电容器在电场作用下产生的电容效应相似, 紧密的双电层近似于平板电容器. 相比普通介质层材料具有更大的电容值, 在微米级的厚度下就具有μF/cm数量级的单位面积电容[14,17]. 图 1 GCS模型双电荷层分布示意图 (a) 阴阳离子分散在电介质中; (b) 在外电场作用下, 电介质内部阴阳离子开始向两级移动; (c) 达到平衡后, 电介质内阴阳离子排布情况 Figure1. Schematic diagram of GCS model with dual-charge layer distribution: (a) The anions are dispersed in dielectric; (b) under the action of electric field, the anions and cations begin to move in the opposite direction; (c) the distribution of anions and cations in dielectric in equilibrium
黑色曲线为离子凝胶膜基底的拉曼光谱, 仅在2980 cm–1处有明显的峰, 且与石墨烯的特征峰不重合. 红色曲线为转移至离子凝胶膜上的石墨烯的拉曼光谱, 从图5可以清楚地看到石墨烯在1580和2680 cm–1处的拉曼特征峰, 这是石墨烯原子晶格振动产生的特征峰G峰和2D峰[20], 说明石墨烯已成功转移至离子凝胶膜表面, 同时2D峰处呈现出完美的单个洛伦兹峰, 表明转移的石墨烯是单层的. 图 5 离子凝胶膜表面石墨烯拉曼光谱, 其中红线为转移石墨烯后的离子凝胶膜拉曼曲线, 黑线为未转移石墨烯的离子凝胶膜拉曼曲线 Figure5. Roman spectra of graphene on ion-gel. Red line corresponds to the ion-gel film with transferred graphene. Black line corresponds to the ion-gel film without graphene
23.2.扫描电子显微镜表征 -->
3.2.扫描电子显微镜表征
图6为离子凝胶膜表面的SEM图像和转移石墨烯后离子凝胶膜表面的SEM图像. 通过图像对比可以看出, 石墨烯转移至离子凝胶膜后完全贴合在膜表面, PMMA基本去除干净, 石墨烯表面基本完整. 图 6 离子凝胶膜表面石墨烯SEM图像 (a) 未转移石墨烯的离子凝胶膜表面; (b) 转移石墨烯后的离子凝胶膜表面 Figure6. SEM images of ion-gel film: (a) The ion-gel film without graphene; (b) the ion-gel film with transferred graphene
图 8 室温环境下GFET电学特性曲线 (a)离子凝胶栅介GFET的转移特性曲线; (b)离子凝胶栅介GFET的输出特性曲线; (c) SiO2栅介GFET的转移特性曲线; (d) SiO2栅介GFET的输出特性曲线 Figure8. Electrical characteristic curves of GFET at room temperature: (a) The transfer characteristic curve of GFET with ion-gel film gate; (b) the output characteristic curve of GFET with ion-gel film gate; (c) the transfer characteristic curve of GFET with SiO2 gate; (d) the output characteristic curve of GFET with SiO2 gate
图 9 p型掺杂石墨烯能级示意图 Figure9. Energy level of p-type doped graphene