Fund Project:Project supported by the National Science Foundation of China (Grant No. 11464045).
Received Date:26 December 2018
Accepted Date:06 March 2019
Available Online:01 May 2019
Published Online:20 May 2019
Abstract:A series of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+ phosphors is prepared by the high-temperature solid-state reaction method, the crystal structures and luminescent properties of the prepared phosphors are investigated by measuring the X-ray diffraction, luminescent spectra and optical microscope. The isomorphic compounds of Sr2Al2SiO7 and Sr2MgSi2O7 contain tetrahedra including [MgO4], [SiO4] and [AlO4]. Although the valences of the [MgO4]6–, [SiO4]4– and [AlO4]5– groups are different, the charge imbalance occurs when the [MgO4]6– and [SiO4]4– substitutes of [AlO4]5– and [AlO4]5–, respectively. While the groups are co-substituted, the charge imbalance disappears. And the larger volume of [MgO4] and the smaller volume of [SiO4] together replaces the similar volume of [AlO4], resulting in the decrease of [(Si/Al)O4] and increase of [(Mg/Al)O4]. Moreover, the decrease of unit cell parameters c and the increase of a and V due to the increased replacement of Mg2+ (0.57 ? for CN = 4) by Al3+(0.39 ? for CN = 4) and Si4+ (0.26 ? for CN = 4) by Al3+ (0.39 ? for CN = 4) cause the ambient temperature to change, the crystal field splitting of the Eu2+ cation to be weakened, and the emission spectra to be blue-shifted from 503 nm to 467 nm, which are closely related to the local coordination environment of the Eu2+, in addition, this reveals that the emission color of this series of phosphors can be tuned from green with color coordinate (0.2384, 0.3919) to blue (0.1342, 0.1673) by adjusting the chemical compositions via the [MgO4]6– and [SiO4]4– groups’ co-substitution for [AlO4]5–. The full width at half maximumof emission band is 120 nm when x = 0, the photoluminescence emission width decreases monotonically from 89 to 50 nm as x is increased from 0.25 to 1. In other words, the full width at half maximum of emission band exhibits a decreasing trend. The internal quantum efficiency is enhanced with increasing x in Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+ phosphors. These results verify that the groups’ substitutions are enhanced with polyhedron changing in the solid solutions and contribute largely to the luminescence properties of the phosphor. Keywords:Sr2(Al1–xMgx)(Al1–xSi1+x)O7/ photoluminescence/ co-substitution/ coordinating polyhedron
图1(a)为Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(x = 0.5)的XRD精修图, 精修的标准数据卡片为Sr2Al2SiO7(PDF#38-1333). 图中“×”表示测量衍射数据, 红色线为计算出的衍射数据, 绿色的垂直线代表模拟衍射峰位置, 蓝色线表示测量值与计算值之间的偏差. 样品的剩余因子值为RP = 12%, RWP = 15%, V = 323.55(7) ?3, a = b = 7.8303(10) ?, c = 5.2769(7) ?. 图1(b)是Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的XRD衍射图, 所有样品均维持四方晶系结构(空间群P-421m). 在放大局部2θ角度15°—23°, 可以看出随着x的增加, (110)和(111)晶面向低角度偏移, 而(001)晶面向高角度偏移. 图 1 (a) 样品C的XRD精修图谱;(b) Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的XRD图谱和2θ范围为15°—23°的峰位移动放大图;(c)晶胞参数随浓度x变化曲线图 Figure1. (a) Rietveld refinement of C; (b) XRD patterns of the Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1), the right inset is the magnified XRD patterns for 2θ region form 15° to 23°; (c) give the cell parameters (a/b, c) and volume (V), respectively, as a function of x concentration
3.2.Sr1.98(Al1–x Mgx)(Al1–x Si1+x)O7: 2% Eu2+ (0 ≤ x ≤ 1)光致发光光谱分析
图2为Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化激发光谱. 在503 nm波长监测下, 荧光粉的激发光谱在260—420 nm范围有两个宽带组成, 峰值分别位于287 nm和365 nm, 对应Eu2+的4f7—4f65d跃迁. [MgO4]和[SiO4]共同替代[AlO4]时没有影响激发光谱的形状. 图 2 Sr1.98(Al1-xMgx)(Al1-xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化激发光谱 Figure2. Normalized excitation spectra of Sr1.98(Al1–xMgx) (Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors
图3(a)是在365 nm波长激发下, 使用光学显微镜拍摄A, C, E样品的荧光图像, 荧光粉颗粒的发光颜色从绿色转变为蓝色. 图3(b)是Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)归一化发射光谱图. 随着[SiO4]、[MgO4]替代[AlO4]多面体浓度的增大, 发射峰从503 nm蓝移至467 nm, 这主要归因于第二配位球的配位多面体替换导致发光中心晶体场发生了变化. x = 0时的发射光谱在400—650 nm范围内有一个很宽的发射带, 半高宽为120 nm, 多面体替换的进一步增加, 发射带的半高宽明显变小, x = 0.25, 0.5, 0.75和1时样品的发射峰在470 nm左右, 发射峰的位置几乎没有变化, 半高宽由89 nm逐渐减小至50 nm. 图 3 (a), (b)在波长365 nm激发下样品A, C, E的光学显微镜图像和Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的归一化发射光谱 Figure3. (a) Optical microscope image of A, C, E excited at a wavelength of 365 nm and (b) normalized emission spectra of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors under 365 nm UV light excitation
23.3.色坐标 -->
3.3.色坐标
图4是用CIE1931软件计算Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉在365 nm波长激发下发射光谱的色坐标. x = 0, 0.25, 0.5, 0.75, 1的色坐标分别为(0.24, 0.39), (0.20, 0.30), (0.17, 0.23), (0.14.0.19), (0.13, 0.16). 图4插图是在近紫外灯365 nm照射下的实物照片, 可以看出颜色从绿色转变为蓝色. Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光粉的发射波长、色坐标和365 nm波长下的内量子效率对比结果如表1所示. 图 4 Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)在365 nm激发波长下的色坐标(插图为实物照片) Figure4. Color coordinates of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) under λex = 365 nm in the CIE chromaticity diagram (the insets show the corresponding digital photos)
样品
发射光谱
色坐标
IQY
λem/nm
FWHM/nm
x
y
A
503
120
0.2384
0.3919
4.3%
B
472
89
0.1972
0.2951
6.1%
C
470
61
0.1675
0.2312
7.3%
D
468
54
0.1463
0.1873
9.0%
E
468
50
0.1342
0.1673
23%
表1Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0≤x ≤ 1)荧光粉发射波长的半高宽, 色坐标值和内量子效率 Table1.The PL bands, color coordinate value, and internal quantum efficiency of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors
4.讨 论图5表示在Sr1.98(Al1-xMgx)(Al1-xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)荧光体系中, Mg2+和Si4+取代Al3+时发光中心局部环境的变化. 以激活剂Eu2+为中心, 与其最邻近的原子称为第一配位球, 次近邻的原子为第二配位球. 第一配位球是8个O原子直接与Eu2+相连, 构成[EuO8]多面体. 第二配位球为Mg2+, Al3+和Si4+, 并与邻近的O原子形成配位多面体[MgO4]、[AlO4]、[SiO4], 多面体通过共用一个氧原子相互连接. 随着四面体替换浓度的增加, 大半径的Mg2+(r = 0.57 ?, CN = 4)取代小半径的Al3+(r = 0.39 ?, CN = 4)会使四面体膨胀, 小半径的Si4+(r = 0.26 ?, CN = 4)会取代大半径的Al3+(r = 0.39 ?, CN = 4)使四面体收缩. 第二配位球所形成的配位多面体的替代引起Eu周围环境的变化, 导致发射光谱出现蓝移现象. 图 5 在荧光粉Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1)中, 随着x的增加, 多面体[(Si/Al)O4]的收缩和多面体[(Mg/Al)O4]的膨胀对发光中心多面体的扭曲 Figure5. Increasing of x leads to polyhedral [(Si/Al)O4] shrinkage and polyhedral [(Mg/Al)O4] expansion distortion the luminescent center polyhedron of Sr1.98(Al1–xMgx)(Al1–xSi1+x)O7: 2%Eu2+(0 ≤ x ≤ 1) phosphors
这里Dq代表5d能级劈裂程度, R是中心离子与配体之间键长, Z是阳离子的化合价, e代表电子电荷, r是d波函数的半径. [SiO4]、[MgO4]替代[AlO4]多面体浓度的增大, 计算[EuO8]多面体中Eu2+的劈裂程度, e, r, Z都是相等的, Dq正比于1/R5. 在[EuO8]多面体中, x = 0(R = 2.669 ?)时的Eu—O键长小于x = 1(R = 2.674 ?)时的键长, 5d能级劈裂减小, 光谱从503 nm蓝移至467 nm, 如图6. 图 6 Eu2+的5d能级变化示意图, VB, CB和CFS分别代表价带, 导带和晶体场劈裂 Figure6. Schematics of the changes in 5d energy levels of the activator. CFS, CB, and VB are crystal field splitting, the conduction band, and the valence band, respectively