Fund Project:Project supported by the National Natural Science Foundation of China (Grant No. 61871355) and the Natural Science Foundation of Zhejiang Pvovince, China (Grant No. LY18F010016).
Received Date:07 January 2019
Accepted Date:02 March 2019
Available Online:01 May 2019
Published Online:20 May 2019
Abstract:Metasurface is an artificial structure composed of sub-wavelength units which can realize the arbitrary control of electromagnetic wave energy by coding and arranging metasurface. Unlike the previous coding metasurface with a fixed phase difference of the neighbor coding unit cells, the frequency coding metasurface possesses the main feature that it has the linear change phase difference and different phase sensitivities in the whole working frequency band of the digital unit cells. And it can flexibly control the reflected terahertz waves to the numerous directions by changing the working frequency without redesigning the coding metasurface structure. In this paper, the frequency coding metasurfaces are designed by using four herringbone unit cells with the same shape and different sizes. They have the same phase response at the initial frequency and the different phase sensitivities throughout the frequency band. To describe the frequency coding characteristics of the unit cells, the digital numbers "0" and "1" are used to represent the low phase sensitivity and high phase sensitivity, respectively. Using the frequency digital coding, it can control the electromagnetic wave energy radiations by a single digital coding metasurface without changing the spatial coding pattern. By the combination of the spatial coding and frequency coding, It can manipulate the electromagnetic wave energy radiations more flexibly. We demonstrate 1-bit, 2-bit periodic frequency coding metasurfaces and 2-bit non-periodic frequency coding metasurface. They are all designed in the pre-designed coding sequence to control the electromagnetic wave energy radiations. Numerically simulated results confirm that the frequency coding metasurface can flexibly control the reflected terahertz waves to the numerous directions by changing the working frequency without redesigning the coding metasurface structure. Additionally, the number of the backward diffusion-like scattering beam increases with the change of frequency for the 2-bit random terahertz frequency coding metasurface. It has a good dispersion effect on the main lobe energy of terahertz wave radiation. The radar cross section can be reduced effectively, and the maximum value of radar cross section reduction can reach 29 dB in the direction of θ = 0, φ = 0. It has a great application value in the terahertz wave cloaking. Keywords:coding metasurface/ terahertz manipulation/ phase sensitivity
图 2 4种人字形超表面基本单元结构及其特性曲线 (a) A单元(L = 48 μm); (b) B单元(L = 40 μm); (c) C单元(L = 34 μm); (d) D单元(L = 20 μm); (e) 4种单元在0.4 THz到1.0 THz下的反射率; (f) 4种单元在0.4 THz到1.0 THz下的反射相位 Figure2. The basic unit structure and characteristic curves of four kinds of herringbone metasurface: (a) Unit A (L = 48 μm); (b) unit B (L = 40 μm); (c) unit C (L = 34 μm); (d) unit D (L = 20 μm); (e) reflectivity of four unitsfrom 0.4 THz to 1.0 THz; (f) reflection phase of four units from 0.4 THz to 1.0 THz.
图 3 太赫兹频率编码器 (a)以“0-0, 0-1, 0-0, 0-1”序列沿x方向排列1-bit周期太赫兹频率编码器; (b)棋盘式1-bit周期太赫兹频率编码器; (c)以“00-00, 00-01, 00-10, 00-11”序列沿x方向排列2-bit周期太赫兹频率编码器; (d) 2-bit随机太赫兹频率编码器; (e) 2-bit非周期太赫兹频率编码器 Figure3. The terahertz frequency coding metasurface: (a) 1-bit periodic terahertz frequency coding metasurface arranged along x direction with “0-0, 0-1, 0-0, 0-1” sequence; (b) chessboard 1-bit periodic terahertz frequency coding metasurface; (c) 2-bit periodic terahertz frequency coding metasurface arranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence; (d) 2-bit random terahertz frequency coding metasurface; (e) 2-bit non-periodic terahertz frequency coding metasurface.
因此, 将$\alpha _{\rm{1}}^{\rm{A}}$编码为“0”, 将$\alpha _{\rm{1}}^{\rm{B}}$编码为“1”, 用来表征A, C两个单元的频率特性, 得到A, C两个单元的最终编码状态分别为“0-0”和“0-1”. 为了进一步分析1-bit太赫兹频率编码器的工作性能, 分别设计了以序列“0-0, 0-1, 0-0, 0-1” 沿x方向进行编码(见图3(a))和以数字序列“0-0, 0-1, 0-0, 0-1/0-1, 0-0, 0-1, 0-0”棋盘式进行编码(见图3(b))的太赫兹频率编码器. 为了减小耦合效应, 每个编码粒子采用3×3个相同单元组成的超级单元进行编码排布. 利用CST软件对两种1-bit太赫兹频率编码器进行建模计算, 结果如图4—图7所示. 图4和图6为1-bit太赫兹频率编码器三维远场散射图, 图5和图7为1-bit太赫兹频率编码器二维电场图. 由图4(a)可以看出, 在用数字序列“0-0, 0-1, 0-0, 0-1”沿x方向进行编码的1-bit太赫兹频率编码器, 当初始频率f0 = 0.4 THz, 垂直入射的太赫兹波被垂直反射. 产生这种现象是由于A和C两个单元在初始频率f0 = 0.4 THz处具有一样的相位响应, 相邻单元相位差为0°, 等同于一块完美导体, 所以垂直入射的太赫兹波被原路垂直反射回去. 随着工作频率逐渐增加, 反射波束由原来一束指向z轴的主能量转换为两束对称光束(见图4(b)和图4(c)). 当频率增加到f1 = 1.0 THz时, 因A和C两个单元之间相位差变为180°, 原主瓣几乎消失, 在θ1 = 30°处产生两束z轴对称的光束, 如图4(d)所示. 此时, 俯仰角为θ1 = sin–1(λ/Γ1)=30°, 其中Γ1 = 2×3×100 μm = 600 μm为编码序列一个周期的物理长度, λ为自由空间波长. 图5(a)—(d)分别为对应图4(a)—(d)的二维电场图, 从图5中的光斑点位置也很好地验证了计算结果. 图 4 序列“0-0, 0-1, 0-0, 0-1”沿x方向上周期排布的1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图 Figure4. 1-bit terahertz frequency coding metasurface arranged periodically along x direction with sequence “0-0,0-1, 0-0, 0-1”: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 5 序列“0-0, 0-1, 0-0, 0-1”沿x方向上周期排布的1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图 Figure5. 1-bit terahertz frequency coding metasurface arranged periodically along x direction with sequence“0-0, 0-1, 0-0, 0-1”: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 7 棋盘式1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图 Figure7. Chessboard 1-bit terahertz frequency coding metasurface: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 6 棋盘式1-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图 Figure6. Chessboard 1-bit terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
上述计算可得到A, B, C和D四个单元在初始频率处具有相同的相位响应, 但在频率范围内相位灵敏度却不一样. 当太赫兹波垂直入射到太赫兹频率编码器时, 由太赫兹编码器产生的远场能量与${\left| {1 + {{\rm{e}}^{{\rm{j}}\varphi }}} \right|^2}$成正比, 其中φ是基本单元间的相位差, 只需用同一个太赫兹频率编码器改变不同的工作频率点就可以实现对太赫兹波反射能量的不同控制. 为了观察其产生的现象, 利用CST对图3(c)和图3(d)两种设计方案进行了仿真, 结果如图8—图11所示. 图8和图10分别是以序列“00-00, 00-01, 00-10, 00-11”沿x方向排列的2-bit周期太赫兹频率编码器的三维远场散射以及二维电场图. 图9和图11分别是2-bit随机太赫兹频率编码器的三维远场散射以及二维电场图. 图8(a)和图9(a)是在初始频率f0 = 0.4 THz时, 太赫兹波垂直照射到2-bit周期太赫兹频率编码器所产生的结果. 由于四个基本单元在f0 = 0.4 THz处相位差为 图 8 “00-00, 00-01, 00-10, 00-11”周期排布的2-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图 Figure8. 2-bit periodic terahertz frequency coding metasurfacearranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence: Three-dimensionalfar-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 11 2-bit太赫兹随机频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时二维电场图 Figure11. 2-bit random terahertz frequency coding metasurface:two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 10 2-bit太赫兹随机频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图 Figure10. 2-bit random terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 9 “00-00, 00-01, 00-10, 00-11”周期排布的2-bit太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图 Figure9. 2-bit periodic terahertz frequency coding metasurface arranged along x direction with “00-00, 00-01, 00-10, 00-11” sequence: Two-dimensionalelectric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
上式表明非周期性太赫兹编码器在整个工作频率中的调控性能, 即反射太赫兹波主瓣方向只与工作频率大小有关. 当频率f从初始频率f0 = 0.4 THz增加到f1 = 1.0 THz时, $0.{\rm{4}}2 \times (1 - {f_0}/f)$相应的从0增加到0.25, 此时垂直入射的太赫兹波的反射光束相应地从0°转移到14.5°, 反射太赫兹波三维远场如图13所示, 相应的二维电场如图14所示. 图 13 2-bit非周期排布太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的三维远场图 Figure13. Fig. 10. 2-bit non-periodic terahertz frequency coding metasurface: Three-dimensional far-field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.
图 14 2-bit非周期排布太赫兹频率编码器 (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz时的二维电场图 Figure14. Fig. 10. 2-bit non-periodic terahertz frequency coding metasurface: Two-dimensional electric field pattern of (a) f = 0.4 THz, (b) f = 0.75 THz, (c) f = 0.95 THz, (d) f = 1.0 THz.