Fund Project:Project supported by the National Natural Science Foundation of China(Grant Nos. 61775097, 11574152, 61605080), the National Key Research and Development Program of China (Grant No. 2017YFB0503505),the Open Foundation of Key Lab of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education of China (Grant No. 2017VGE02), and the Postgraduate Research and Practice Innovation Program of Jiangsu Province, China (Grant No. SJCX17_0336).
Received Date:25 October 2018
Accepted Date:11 January 2019
Available Online:23 March 2019
Published Online:20 April 2019
Abstract:With the rapid development of computer network technology, information security has drawn considerable attention in recent years. Owing to the characteristics of multi-dimensional operation and parallel processing capability, optical image encryption techniques are arousing great interest in many exciting fields. Since the pioneering work on optical image encryption using double random phase encoding technique, a large number of algorithms and architectures have been proposed and realized. However, with the further analysis of the securities of these schemes, most of them have been verified to be vulnerable to different types of attack algorithms. Recently, optical encryption schemes based on the polarization properties of light wave have been extensively studied, for an additional flexibility in the encryption key design is provided, which can achieve high robustness against brute force attack by a combination of multiple private keys. Nevertheless, optical encryption schemes based on the polarization properties of light wave could still be vulnerable to known- and chosen- plaintext attacks. Therefore, in this paper, a novel asymmetric polarization encryption method is implemented for dual images, and combined with interference-based optical image encryption method and a Q-plate. First, the information about the two images to be encrypted is separated into two pure phase plates by means of interference optical image encryption, which will be further encoded into two mutually orthogonally polarized light beams. Next, the Q-plate and pixelated polarizer are used for realizing different polarization distributions of the two light beam. Ultimately, the output intensity distribution is recorded by a charge coupled device (CCD) which will be treated as the final ciphertext. For actualizing the asymmetric encryption, one of the pure phase plates acts as a decryption key, which is different from the encryption key. We can control the polarization state of each pixel according to the parameter q, causing the Q-plate to be electrically controllable and the optic-axis orientation of each pixel to differ from one another. It should be emphasized that the value of q and the polarization angle of the pixelated polarizer play the role of two encryption keys, which improves the security of the algorithm extremely, due to their high sensitiveness. Theoretical analyses and numerical simulations verify the feasibility and effectiveness of the proposed encryption scheme. Keywords:Q-plate/ asymmetric encryption/ polarization
全文HTML
--> --> --> -->
2.1.非对称偏振加密原理
Q-plate是由石英玻璃中自组装纳米结构的飞秒激光制造的具有局部变化光轴的人造单轴晶体[21]. 它的局部光轴的取向平行并垂直于子波长槽, 其结构图如图1所示. 局部光轴的方向可以表示为 图 1 当q为0.5时的结构化示意图 ((x, y)代表笛卡尔坐标, 黄色虚线代表子波长槽, $\alpha $表示局部光轴的方向) Figure1. Structural diagram when q is 0.5 ((x, y) represents Cartesian coordinates; yellow dashed line represents subwavelength scale; $\alpha $ represents local optical axes).
其中$f\left( {x,y} \right)$代表原始图像, $f'\left( {x,y} \right)$代表解密后的图像, $E\left( \cdot \right)$代表期望值. 图7给出了相关系数值随噪声强度系数$k$变化的曲线图以及当噪声强度系数为0.02和0.06时得到的解密图, 其中图7(a)是解密得到的原始图像1, 图7(b)是解密得到的原始图像2. 从图7可以看出, 当噪声强度系数为0.06时, 仍可以辨别出原始图像的信息, 因此, 该算法具有一定的抗噪攻击能力. 也就是说在实际条件和环境中, 该算法具有很好的适应性, 即便受到一些干扰, 也能完成加解密. 图 7 抗噪声攻击模拟图 (a)第一幅解密图的相关系数CC随k变化的曲线图及k = 0.02, 0.06时的解密图; (b)第二幅解密图的相关系数CC随k变化的曲线图及k = 0.02, 0.06时的解密图 Figure7. Simulation diagram of anti-noise attack: (a) CC curve of noise attack including decrypted the first image obtained with k = 0.02, 0.06; (b) CC curve of noise attack including decrypted the second image obtained with k = 0.02, 0.06.
23.4.传统偏振加密和使用Q-plate做偏振加密的比较 -->
3.4.传统偏振加密和使用Q-plate做偏振加密的比较
传统偏振加密是用波片通过两束光的叠加对单幅图像做偏振加密, 它的其中一个加密密钥是波片的角度, 密钥的敏感性不高. 本文基于Q-plate, 用一束光对两幅图像做偏振加密, 其中一个加密密钥是q值. 本文中对传统偏振加密和使用Q-plate做偏振加密就加密密钥的敏感性和密文抗剪切攻击这两方面做了比较. 首先, 分别将传统偏振加密的加密密钥(波片的角度)和Q-plate的q值各改变万分之一, 用改变后的加密密钥做解密模拟. 模拟结果如图8所示. 图8(a)表示传统的用波片做偏振加密, 波片的角度改变万分之一后的解密图. 从图8(a)中可以看出, 解密图已经能够清晰地看到原图的信息, 所以加密密钥的敏感性并不是很好. 图8(b)和(c)是使用Q-plate做偏振加密, q值改变万分之一后的解密图, 从中并不能看到原图的信息, 加密密钥的敏感性很高. 图 8 传统偏振加密和使用Q-plate做偏振加密比较 (a)传统用波片做偏振加密, 加密密钥波片角度改变万分之一后的解密图; (b), (c)用Q-plate做偏振加密, 密钥q值改变万分之一后的解密图 Figure8. Traditional polarization encryption compared with polarization encryption utilizing a q-plate: (a) Decryption image of traditional polarization encryption employing wave plates with the angle changed by 1/10000; (b), (c) decryption image of polarization encryption employing a Q-plate with the parameter q changed by 1/10000.
其次, 分别对使用Q-plate做偏振加密以及传统偏振加密的密文做了抗剪切攻击的测试. 模拟结果如图9所示. 图9(a), (b), (c)分别表示用Q-plate做偏振加密信息丢失6.25%的密文和解密图. 从图9可以看出, 解密得到的结果能够看出原始图像的信息, 这说明, 使用Q-plate做偏振加密具有很好的抗剪切攻击. 图9(d)和(e)分别表示传统偏振加密信息丢失6.25%的密文和解密图. 显然, 就抗剪切攻击方面而言, 使用Q-plate做偏振加密要比使用波片做偏振加密抗剪切效果好. 图 9 使用Q-plate做偏振加密和传统偏振加密比较 (a)用Q-plate做偏振加密, 信息丢失6.25%的密文图; (b), (c)用Q-plate做偏振加密, 密文信息丢失6.25%的解密图; (d)传统偏振加密, 信息丢失6.25%的密文图; (e)传统偏振加密, 信息丢失6.25%的解密图 Figure9. Polarization encryption utilizing a q-plate compared with traditional polarization encryption: (a) Ciphertext with 6.25% occlusion of polarization encryption employing a Q-plate; (b), (c) decrypted image from (a); (d) ciphertext with 6.25% occlusion of traditional polarization encryption; (e) decrypted image from (d).