1.College of Electronic and Information Engineering, Taizhou University, Taizhou 318000, China 2.College of Pharmaceutical Chemistry and Material Engineering, Taizhou University, Taizhou 318000, China
Fund Project:Project supported by the Public Technology Application Research Plan of Zhejiang Province, China (Grant No. 2017C37096).
Received Date:07 October 2018
Accepted Date:04 January 2019
Available Online:01 March 2019
Published Online:20 March 2019
Abstract:Amorphous FeSiB ribbons with nominal composition of Fe78Si9B13 are prepared by single roll rapid quenching technique. In order to enhance the giant magneto-impedance (GMI) effect of FeSiB ribbons, interlaminar gluing method is used to produce FeSiB/Cu/FeSiB sandwiched structure in which the FeSiB ribbons act as external soft magnetic layers and the Cu foil acts as internal conductive layer. The variation characteristics of GMI with angle $\beta$ between the external magnetic field and the ribbon axis for the single layer FeSiB ribbon and the sandwiched ribbon are studied by a rotating device placed in magnetic field which can drive the sample to rotate, to obtain a variable angle $\beta$ from 0° to 90° with 15° degree angle interval. Magnetic domain structure detection shows that the amorphous FeSiB ribbons have near-axial magnetic anisotropy, and the angle between easy axis and ribbon axis is about 15°. In this work, in the case without considering the effects of shape anisotropy, the functional relationship among magnetic field at anisotropic peak of permeability, transverse permeability ratio and angle $\beta$ is obtained according to the expression of the transverse permeability of ribbon derived from a domain rotation model. The results display that anisotropic peak appears in the transverse permeability for each of all testing values of angle $\beta$. Moreover, the transverse permeability ratio increases with $\beta$ increasing. The magneto-impedance testing results indicate that the maximum GMI ratio of single layer ribbon is only about 30% at an optimum response frequency of 7.0 MHz, and angle $\beta$ has almost no influence on the GMI. In contrast, the GMI of sandwiched ribbon presents a significant enhancement, the maximum value of the longitudinal GMI ratio and that of transverse GMI ratio reach 272% and 464%, respectively at an optimum response frequency of 0.6 MHz, the GMI of sandwiched ribbon is sensitive to the variation of angle $\beta$, and with increase of $\beta$ the GMI increases accordingly. In addition, for all testing values of angle $\beta$, the GMI profiles of sandwiched ribbon show anisotropic peaks, due to the influence of transverse demagnetization field, and the anisotropic peak broadens with the increase of angle $\beta$. By comparing the theoretical and experimental results, it can be concluded that for the sandwiched ribbon, the characteristics of GMI changing with angle $\beta$ agree better with the theoretical transverse permeability, which but is not for single layer ribbon. Besides, whether the anisotropic peak of GMI appears is independent of the orientation of the external magnetic field. As the transverse permeability ratio increases with the increase of angle $\beta$, the GMI effect of sandwiched ribbon is enhanced accordingly. The study results also demonstrate that the domain rotation model can be used to explicate the variation of GMI properties of sandwiched ribbon with the angle between magnetic field and ribbon axis qualitatively when the domain rotation magnetization is dominant. Keywords:giant magneto-impadence effect/ FeSiB/ sandwiched ribbon
全文HTML
--> --> -->
3.畴转磁化模型根据图1的磁阻抗测量方法, 薄带中各物理量关系示意图如图2所示, 驱动电流i沿带轴x方向, 产生的横向驱动场Ht沿薄带横向y方向. Hk表示非晶薄带面内应力各向异性等效场, 与带轴夹角为${\theta _{\rm{k}}}$; 磁化矢量Ms与Hk的夹角为$\theta$; 外磁场Hext平行于薄带表面, 与带轴夹角为$\beta$. 图 2 薄带面内各向异性场、磁化强度、外磁场、交流驱动场关系示意图 Figure2. Sketch map of the relationship among in-plane anisotropy field, magnetization, external magnetic field, AC driven field in ribbon
图3(a)和图3(b)分别为3.5 mm × 3.5 mm和28 mm × 3.5 mm非晶FeSiB薄带自由面磁畴结构图像, 针尖扫描范围均为15 ${\text{μm}}$ × 15 ${\text{μm}}$. 由图3可见, 薄带磁畴取向为倾向于带轴方向的180°条形磁畴. 图3(a)为3.5 mm × 3.5 mm样品, 其易轴与带轴的夹角约为15°, 采用立体测量法[23]测得其平均畴宽约2.5 ${\text{μm}}$; 图3(b)为28 mm × 3.5 mm样品, 易轴与带轴的夹角约为12°, 平均畴宽约2.1 ${\text{μm}}$, 相比3.5 mm × 3.5 mm样品, 其易轴往轴向偏转了3°且畴宽变窄. 非晶薄带磁各向异性主要来自于应力各向异性和退磁场造成的形状各向异性, 对于3.5 mm × 3.5 mm正方形薄带, 沿边长方向退磁因子相同, 各向异性取向分布由应力各向异性决定; 而对于28 mm × 3.5 mm长条形薄带样品, 由于存在较大横向退磁场, 为了降低退磁场能, 使得磁畴细分以及易轴向带轴方向偏转. 图 3 非晶FeSiB薄带的磁畴结构 (a) 3.5 mm × 3.5 mm薄带; (b) 28 mm × 3.5 mm薄带 Figure3. Magnetic domain of amorphous ribbons: (a) Ribbon size is 3.5 mm × 3.5 mm; (b) ribbon size is 28 mm × 3.5 mm
图4为非晶FeSiB薄带的磁滞回线, 所用样品尺寸为3.5 mm × 3.5 mm, 图中“L”, “T”分别表示外磁场平行和垂直于带轴方向. 图4显示, 淬态FeSiB薄带具有良好的软磁性能, 矫顽力约为0.7 kA·m–1, 平行和垂直方向的磁滞回线都向外场方向倾斜, 表明样品易轴偏离带轴方向, 这与图3磁畴结构检测结果一致. 图 4 非晶FeSiB薄带磁滞回线(L和T分别表示所加磁场平行和垂直于带轴方向) Figure4. Hysteresis loop of amorphous FeSiB ribbon (“L” and “T” indicates the field direction parallel or perpendicular to the ribbon axis, respectively)
24.2.单层薄带的GMI特性 -->
4.2.单层薄带的GMI特性
图5给出的是长28 mm、宽3.5 mm的单层薄带磁阻抗(MI)特性曲线. 其中图5(a)为不同$\beta$角时MI比随驱动电流频率的变化特性, MI比定义为$\Delta Z/{Z_{\rm{m}}} = ({Z_0} - {Z_{\rm{m}}})/{Z_{\rm{m}}}$, 其中Z0和Zm分别表示外磁场为0和23 kA/m时样品的阻抗. 由图5(a)可见, 不同$\beta$角, 单层薄带MI比曲线几乎重叠, 7.0 MHz为其GMI最佳响应频率, 在此频率下, MI比大约都在30%, 可见单层薄带GMI不太显著, 且对外磁场方向变化不敏感. 图5(b)为$\beta$ = 0°时不同频率的MI比随驱动外磁场的变化特性, 其他$\beta$角由于曲线重叠且情况与此相似, 没再给出. 这里MI比定义为$\Delta Z/Z = ({Z_H} - {Z_{\rm{m}}})/{Z_{\rm{m}}},$ 其中ZH和Zm分别是样品在磁场为H和23 kA/m时的阻抗. 由图5(b)可见, 单层薄带在0.6 MHz和3.0 MHz频率时呈单峰形态, 5.0 MHz开始出现微弱的双峰, 至7.0 MHz双峰变得明显, 双峰半宽约为0.4 kA/m. 图 5 单层薄带磁阻抗特性 (a) 不同$\beta$角的MI比随频率的变化特性; (b) $\beta$ = 0°时, 不同频率的MI比随外磁场的变化特性 Figure5. The MI characteristics of single layer ribbon: (a) MI ratios of different $\beta$ vary with frequency; (b) MI ratios of different frequencies change with field, at $\beta$ = 0°
24.3.三明治薄带的GMI特性 -->
4.3.三明治薄带的GMI特性
图6(a)和图6(b)分别为不同$\beta$角三明治薄带的MI比随驱动电流频率和外磁场变化的特性曲线, MI比的定义与图5单层薄带的相同. 从图6(a)可以看出, 三明治薄带GMI的最佳响应频率为0.6 MHz, 除低于0.6 MHz因曲线重叠不易分辨外, 同频率处的MI比都随夹角$\beta$的增大而增大. 0.6 MHz频率处, 0°, 15°, 30°, 45°, 60°, 75°和90°的MI比分别为272%, 278%, 302%, 328%, 355%, 410%和464%, 可见该三明治薄带GMI对外磁场方向敏感, 以此可用来确定外磁场的方向. 相比单层FeSiB薄带7.0 MHz下约30%的阻抗变化率, 三明治薄带GMI最佳频率显著降低, GMI效应大大增强, 464%的阻抗变化率与应力退火Fe基纳米晶三明治薄带相比拟[11], 且避免了退火脆性问题, 淬态FeSiB三明治薄带的低频高GMI特性, 有利于其在磁传感器上的应用. 图6(b)显示, 除90°曲线出现平顶峰(双峰不明显)以外, 其他夹角的MI比曲线都出现了明显的双峰(各向异性峰)形态, 表明对于FeSiB三明治薄带, 在0.6 MHz频率下, 磁化过程已由磁矩转动来实现[20]. 0°, 15°, 30°, 45°, 60°, 75°双峰和90°平顶峰的半宽分别约为0.6, 0.6, 0.7, 0.8, 1.0, 1.6和2.0 kA/m, 峰宽变化趋势随$\beta$的增大而增大, 由于磁滞[24]造成双峰不对称现象. 与单层薄带相比, 三明治薄带GMI出现各向异性峰的频率要低得多, FeSiB薄带畴壁弛豫频率一般为几百kHz[25], 高于弛豫频率时, 磁化过程主要由畴转磁化来实现, 可见相比于单层薄带, 三明治薄带磁阻抗随外磁场变化能更好地反映材料畴转磁化现象. 图 6 不同$\beta$角下三明治薄带磁阻抗特性 (a) MI比随频率的变化特性; (b) 0.6 MHz频率下MI比随外磁场的变化特性 Figure6. The MI characteristics of sandwiched ribbon at different angle $\beta$: (a) MI ratios vary with frequency; (b) field dependence of MI ratios at the frequency of 0.6 MHz