1.College of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China 2.Collaborative Innovation Center of Quantum Matter, State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, China 3.Department of Physics, Capital Normal University, Beijing 100037, China 4.CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
Fund Project:Project supported by the National Key Research and Development Program of China(Grant Nos. 2017YFA0402300 , 2017YFA0304900), the National Natural Science Foundation of China (Grant No. 11604334), the Key Tesearch Program of the Chinese Academy of Sciences, China (Grant No. XDPB08-3), and the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201807).
Received Date:07 November 2018
Accepted Date:04 December 2018
Available Online:01 February 2019
Published Online:20 February 2019
Abstract:We analyze ionic spectrum of lanthanum via intermediate state (Xe)$ 5d6d \; ^3F_2 $ in the energy region 89872-91783 cm–1, and the spectrum is obtained using five-laser resonance excitation in combination with a method of sequential ionization by a pulsed electric field and a constant electric field, and has been recalibrate in this work. Both of one strong and one weak autoionization Rydberg series converging to the La2+ state are determined. Meanwhile, the two autoionization Rydberg series are assigned by relativistic multichannel theory (RMCT) within the framework of multi-channel quantum defect theory (MQDT). More specifically, the strong autoionization Rydberg series is assigned to $ 5dnp\left(\dfrac{5}{2},\dfrac{1}{2}\right)_3 $ and/or $ 5dnp\left(\dfrac{5}{2},\dfrac{1}{2}\right)_2 $, and the weak autoionization Rydberg series is assigned to $ 5dnf\left(\dfrac{5}{2},\dfrac{5}{2}\right)_3 $ and/or $ 5dnf\left(\dfrac{5}{2},\dfrac{5}{2}\right)_2 $. We focus on the behavior of quantum defect with excitation energy for high $ n $ Rydberg states, which are sensitive to the existence of a external field. We find the breakdown of quantum defect regular behavior for a specific Rydberg series and autoionization Rydberg series of La+ as the effective quantum number $ n^\star>67 $. Due to that our calculations, which are obtained by relativistic multichannel theory and included configuration interactions, are in basically agreement with that for experimental low $ n $ ($ n^\star<67 $) Rydberg states as well as small stray electric fields, we suggest that plasma formed by photoionization of La atoms in the second excitation step may be responsible for the breakdown of quantum defect regular behavior. Keywords:quantum defect/ Rydberg state/ relativistic multi-channel theory
其中第二步光$ \lambda_2 $高出原子电离阈值58.2 cm–1, 将原子激发至自电离态(autoionization Rydberg series, AIS)[23]. 当激光激发完成后, 一个弱脉冲场将所有离子引导到一个很强的直流场(50 kV/cm), 弱的脉冲电场不足以将里德伯离子电离, 而强的直流场可以将有效量子数$ n^\star >14 $的离子里德伯态电离成二价离子, 所有离子经过飞行时间质谱仪后由微通道板(microchannel plate, MCP)收集, 离子信号由于MCP的倍增效应被放大, MCP具有很高的时间分辨率(< 100 ps), 单片MCP的倍增系数可达约104, 由此区分镧原子电离产生的La+和由一价镧离子激发到高激发态电离产生的La2+信号, 得到几乎纯净的一价镧离子激发光谱[24]. 对于不同能区激发谱, 施加的场电离条件有所不同, 因此得到的MCP信号有差异, 这就是测量的两段有重叠能区的光谱信号强度有差异的原因, 如图1所示. 为了对实验中扫描的激光波长进行定标, 引出少量光利用F-P标准具(自由光谱程约0.64 cm–1)作相对定标, 并利用空心阴极灯的光谱线进行绝对定标. 实验时整个装置保持在真空度优于6.7 × 10–4 Pa的真空中, 杂散电场小于0.1 V/cm[25], 实验使用的染料激光器的线宽为0.5 cm–1. 图 1 由中间态(Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm F}_2 $激发的一价镧离子光谱的能量标定: 以文献[1]的89690.4—91639.8 cm–1光谱(下图)为基准, 对89872.8—91783.2 cm–1能区光谱(上图)[19]重新标定, 平移了–10.3 cm–1. 横轴能量以一价镧离子基态能量为零点 Figure1. The energy calibration of the excited La+ spectrum via intermediate state (Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm F}_2 $. We recalibrate the spectrum[19] in the energy region 89872.8—91783.2 cm–1 (upper figure) according to the spectrum[1] in the energy region 89690.4—91639.8 cm–1(lower figure), and the offset of the recalibration is –10.3 cm–1. The zero point of energy is taken the energy of the ground state of La+.
图 3 一价镧离子的里德伯系列(下图)和自电离里德伯系列(上图)对应的模为1的量子数亏损随激发能量的变化关系. 实验值用实心圆点表示, 理论计算给出了$ J^\pi=3^- $的所有可能的束缚态能级和本征通道$ 5{\rm d}\epsilon {\rm p}\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $的谱峰能级对应的模为1的量子数亏损, 用空心圆点表示. 激发能量用有效量子数$ n^\star $表征, 利用了里德伯关系, $ E=E_\infty-\dfrac{Z^2 Ry.}{(n^\star)^2}, n^\star=n-\mu_{n, l, j} $, 这里$ E $是激发能量, $ n^\star $为有效量子数, $ \mu $为量子数亏损, $ E_\infty $ 是相应的电离阈值, $ Z $为离子实的有效正电荷数, $ Ry. $为里德伯常数 Figure3. Quantum defect $ \mu $ mod 1 v.s. excited energy for Rydberg series(lower figure) and autoionization Rydberg series(upper figure) of La+. $ \bullet $: Experimental data. $ \circ $: theoretcal quantum defect mod 1 for all possible bound state energy levels with $ J^\pi=3^- $ symmetry and peak positions of eigenchannel $ 5{\rm d}\epsilon {\rm p}\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $. Excitation energy is represented by the effective quantum number $ n^\star $, according to Rydberg formula $ E=E_\infty-\dfrac{Z^2 Ry.}{(n^\star)^2}, n^\star=n-\mu $. Here, $ E $ is excitation energy, $ n^\star $ is effective quantum number, $ \mu $ is quantum defect, $ E_\infty $ is the ionization threshold, $ Z $ is the charge of the ionic core, and $ Ry. $ is Rydberg constant.
$ E_{{\rm{exp.}}} $
$ n^\star $
$ E_{{\rm{theo.}}} $
$ E_{{\rm{exp.}}} $
$ n^\star $
$ E_{{\rm{theo.}}} $
(1)
(2)
(1)
(2)
90680.0
19.66
90676.4
90683.3
91678.8
56.56
91679.2
91679.5
90796.0
20.74
90777.4
90789.4
91683.4
57.53
91684.0
91684.1
90887.1
21.74
90865.5
90883.9
91688.0
58.55
91688.4
91688.5
90967.0
22.74
90972.6
90963.6
91692.3
59.56
91692.9
91692.7
91035.9
23.72
91031.5
91033.5
91696.3
60.55
91697.0
91696.8
91092.7
24.63
91095.1
91095.1
91700.1
61.53
91700.5
91700.6
91151.4
25.70
91149.8
91149.8
91703.8
62.54
91704.3
91704.1
91201.3
26.72
91192.8
91199.8
91707.3
63.54
91707.8
91707.8
91244.8
27.72
91244.4
91243.2
91710.7
64.56
91711.1
91711.1
91316.9
29.65
91318.1
91317.2
91713.9
65.56
91714.2
91714.2
91350.9
30.72
91349.9
91349.0
91717.1
66.61
91717.4
91717.3
91379.2
31.70
91379.2
91381.2
91720.0
67.61
91720.3
91720.2
91404.1
32.64
91405.3
91405.4
91722.6
68.54
91723.0
91722.9
91428.5
33.66
91428.9
91429.3
91725.2
69.52
91725.6
91725.6
91450.4
34.65
91451.1
91451.1
91727.7
70.49
91728.2
91728.2
91470.7
35.65
91473.2
91472.4
91730.3
71.55
91730.6
91730.5
91489.4
36.66
91491.0
91489.9
91732.7
72.58
91732.9
91732.9
91506.3
37.65
91507.5
91506.9
91734.7
73.47
91735.2
91735.2
91522.0
38.64
91523.2
91522.6
91737.0
74.53
91737.3
91737.3
91536.2
39.61
91537.5
91537.1
91739.0
75.49
91739.4
91739.3
91550.0
40.62
91551.2
91549.7
91741.0
76.49
91741.4
91741.4
91562.5
41.61
91564.0
91563.7
91742.8
77.42
91743.3
91743.2
91574.3
42.61
91575.3
91576.6
91744.8
78.50
91745.1
91745.0
91585.1
43.60
91585.9
91586.8
91746.5
79.45
91746.8
91746.9
91595.5
44.61
91596.3
91596.5
91748.2
80.44
91748.6
91748.6
91604.9
45.60
91605.6
91605.9
91749.7
81.35
91750.2
91750.2
91613.8
46.59
91614.5
91614.6
91751.4
82.41
91751.8
91751.8
91622.1
47.58
91622.8
91623.1
91752.9
83.39
91753.3
91753.3
91629.9
48.56
91630.8
91630.9
91754.6
84.53
91754.8
91754.8
91637.3
49.56
91638.1
91638.3
91755.8
85.37
91756.2
91756.2
91644.2
50.54
91645.2
91645.2
91757.2
86.38
91757.6
91757.6
91650.9
51.56
91651.7
91651.7
91758.4
87.27
91759.0
91758.9
91657.1
52.55
91657.8
91658.0
91759.8
88.35
91760.2
91760.2
91662.9
53.54
91663.8
91663.8
91761.3
89.56
91761.4
91761.5
91668.4
54.53
91669.2
91669.2
91762.1
90.22
91762.6
91762.6
91673.9
55.57
91674.3
91674.4
表1一价镧离子强自电离里德伯系列能级位置实验和理论比较. 理论标识分为两列: (1)本征通道$ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $, (2)本征通道$ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_2 $. 实验能级由中间态(Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $激发的光谱得到. 实验误差为0.5 cm–1 Table1.Comparison of energy positions (cm–1) between the experimental and the theoretical strong autoionization Rydberg series of La+. Theoretical assignments are divided into two columns with the labels: (1) eigenchannel $ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_3 $, (2) eigenchannel $ 5d\epsilon p\left(\dfrac{5}{2}, \dfrac{1}{2}\right)_2 $. The experimental energy levels are obtained via the intermediate state (Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $. The experimental error is 0.5 cm–1.
$ E_{{\rm{exp.}}} $
$ n^\star $
$ E_{{\rm{theo.}}} $
$ E_{{\rm{exp.}}} $
$ n^\star $
$ E_{{\rm{theo.}}} $
(1)
(2)
(1)
(2)
90980.9
22.93
90977.0
90981.4
91578.6
43.00
91576.0
91578.3
91317.2
29.66
91318.2
91326.2
91589.1
43.98
91586.1
91591.1
91359.7
31.01
91349.9
91357.1
91598.6
44.93
91596.8
91600.0
91387.7
32.01
91393.1
91386.0
91608.4
45.98
91606.2
91609.2
91412.1
32.97
91417.3
91411.5
91616.7
46.93
91615.2
91617.5
91435.4
33.96
91438.8
91436.8
91625.1
47.95
91623.5
91625.9
91456.7
34.95
91456.1
91457.6
91632.7
48.93
91631.2
91633.2
91474.6
35.86
91475.1
91478.1
91640.0
49.94
91641.5
91640.6
91494.6
36.95
91492.7
91495.9
91646.8
50.93
91645.6
91647.4
91511.1
37.94
91508.9
91512.3
91653.3
51.94
91651.9
91653.9
91526.2
38.92
91523.0
91527.7
91659.3
52.92
91658.2
91660.1
91541.4
39.98
91538.7
91541.6
91665.0
53.91
91664.1
91665.7
91554.8
40.99
91552.1
91554.8
91670.2
54.86
91669.4
91671.1
91567.1
41.99
91564.4
91566.9
91675.5
55.89
91674.7
91676.1
表2一价镧离子弱自电离里德伯系列能级位置实验和理论比较. 理论标识分为两列: (1)本征通道$ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_3 $, (2)本征通道$ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_2 $. 实验能级由中间态(Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $激发的光谱得到. 实验误差为0.5 cm–1 Table2.Comparison of energy positions (cm–1) between the experimental and the theoretical weak autoionization Rydberg series of La+. Theoretical assignments are divided into two columns with the labels: (1) eigenchannel $ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_3 $, (2) eigenchannel $ 5d\epsilon f\left(\dfrac{5}{2}, \dfrac{5}{2}\right)_2 $. The experimental energy levels are obtained via the intermediate state (Xe)$ 5{\rm d}6{\rm d} \; ^3{\rm{F}}_2 $. The experimental error is 0.5 cm–1.
其中$ E_n $是主量子数为$ n $的里德伯态的激发能量, $ \mu $为量子数亏损, $ E_\infty $ 是相应的电离阈值, $ Z $为离子实的有效正电荷数, $ Ry. $为里德伯常数. 在$ n^\star>67 $时里德伯态的量子数亏损平滑变化前提下, 利用里德伯公式(2)式, 拟合得到一价镧离子的电离阈值为90212.5 cm–1, 这比文献[1]给出的电离阈值90212.8 cm–1红移了0.3 cm–1. 图4比较显示了在$ n^\star>67 $时不同电离阈值得到的一价镧离子里德伯系列量子数亏损随激发能量的变化关系, 实心圆点采用的电离阈值来自文献[1], 空心圆点采用拟合的电离阈值. 与实心圆点的量子数亏损变化呈上升趋势相比, 空心圆点对应的量子数亏损变化趋于平稳, 这表明$ n^\star>67 $时里德伯系列量子数亏损平滑性的破坏可以等效为量子数亏损维持平滑性而电离阈值发生降低, 结合等离子体环境下IPD现象, 这可能意味着高$ n $的里德伯能级受到了第二步激发过程中镧原子光电离产生的等离子环境的影响. 图 4 不同电离阈值得到的一价镧离子里德伯系列(有效量子数$ n^\star>67 $时, 对应激发能量范围为90120 cm–1—90175 cm–1)量子数亏损随激发能量的变化关系. 采用文献[1]给出的一价镧离子第一电离阈值90212.8 cm–1, 得出的量子数亏损用实心圆点表示; 采用根据里德伯系列量子数亏损变化光滑性拟合的电离阈值90212.5 cm–1, 得出的量子数亏损用空心圆点表示 Figure4. Quantum defect $ \mu $ v.s. excited energy for the Rydberg series ($ n^\star>67 $, in the energy region 90120 cm–1—90175 cm–1 ) converging to the different ionization thresholds. $ \bullet $: quantum defects obtained by the ionization threshold 90212.8 cm–1 from Ref. [1]. $ \circ $: quantum defects obtained by the ionization threshold 90212.5 cm–1, which is fitted based on the quantum defect regular behavior for a Rydberg series.