1. 新疆大学化学化工学院,石油天然气精细化工教育部重点实验室,新疆 乌鲁木齐 8300462. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
收稿日期:
2018-05-30修回日期:
2018-07-03出版日期:
2019-04-22发布日期:
2019-04-18通讯作者:
陆江银基金资助:
中国科学院过程工程研究所介尺度科学中心创新基金;多相复杂系统国家重点实验室自主研究课题Preparation of W18O49/PET-ITO flexible electrochromic film and its performance
Jiangbo SUN1,2, Jie ZHANG2, Di WANG2, Jiangyin LU1*, Yanbin CUI2*1. Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China2. State Key Laboratory of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-05-30Revised:
2018-07-03Online:
2019-04-22Published:
2019-04-18摘要/Abstract
摘要: 采用溶剂热法制备W18O49纳米线电致变色材料,喷涂在聚对苯二甲酸乙二醇酯?氧化铟锡(PET?ITO)(方阻35 Ω)柔性透明导电基底上得到柔性电致变色薄膜。采用X射线衍射仪、扫描电子显微镜、高分辨场透射电子显微镜和X射线光电子能谱对W18O49的微观结构和价态等进行表征,用电化学工作站与紫外?可见光分光光度计对W18O49/PET?ITO柔性电致变色薄膜的光学调制范围、响应时间和循环稳定性等进行了表征和分析。结果表明,光谱扫描波长?=633 nm时,W18O49/PET?ITO柔性电致变色薄膜的光学调制范围ΔT=23%。薄膜透光率变化90%时,着色和褪色时间分别为12.8和10.6 s。W18O49/PET?ITO柔性电致变色薄膜具有优异的循环稳定性,连续着色褪色循环3000 s薄膜透光率仍达80.9%。
引用本文
孙江波 张杰 王迪 陆江银 崔彦斌. W18O49/PET-ITO柔性电致变色薄膜制备及其变色性能[J]. 过程工程学报, 2019, 19(2): 400-406.
Jiangbo SUN Jie ZHANG Di WANG Jiangyin LU Yanbin CUI. Preparation of W18O49/PET-ITO flexible electrochromic film and its performance[J]. Chin. J. Process Eng., 2019, 19(2): 400-406.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218218
http://www.jproeng.com/CN/Y2019/V19/I2/400
参考文献
[1]方鲲,毛卫民,吴其晔,等.导电高分子电致变色材料及其在飞机和军事伪装中的应用宇航材料工艺[J].宇航材料工艺, 2004, 6(20):9-13 [2]王颖,李健,顾卡丽.智能变色涂层[J].中国表面工程, 2007, 6(20):9-13 [3]Solis J L, Saukko S, Kish L, et al.Semiconductor gas sensors based on nanostructured tungsten oxide[J].Thin Solid Films, 2001, 391(2):255-260 [4]An S, Park S, Ko H, et al.Enhanced NO2 gas sensing properties of WO3 nanorods encapsulated with ZnO[J].Applied Physics A, 2012, 108(1):53-58 [5]Baeck S H, Choi K S, Jaramillo T F, et al.Enhancement of photocatalytic and electrochromic properties of electrochemically fabricated mesoporous WO3 thin films[J].Advanced Materials, 2003, 15(15):1269-1273 [6] Nandiyanto A B D, Arutanti O, Ogi T, et al.Synthesis of spherical macroporous WO3 particles and their high photocatalytic performance[J].Chemical Engineering Science, 2013, 101:523-532 [7] Li C P, Engtrakul C, Tenent R C, et al.Scalable synthesis of improved nanocrystalline, mesoporous tungsten oxide films with exceptional electrochromic performance[J].Solar Energy Materials and Solar Cells, 2015, 132:6-14 [8]Ren Y, Gao Y, Zhao G.Facile single-step fabrications of electrochromic WO3 micro-patterned films using the novel photosensitive sol–gel method[J].Ceramics International, 2015, 41(1):403-408 [9]Moshofsky B, Mokari T.Electrochromic active layers from ultrathin nanowires of tungsten oxide[J].Journal of Materials Chemistry C, 2014, 2(18):3556-3561 [10]Ou J Z, Balendhran S, Field M R, et al.The anodized crystalline WO3 nanoporous network with enhanced electrochromic properties[J].Nanoscale, 2012, 4(19):5980-5988 [11]Gui Y, Blackwood D J.Electrochromic enhancement of WO3-TiO2 composite films produced by electrochemical anodization[J].Journal of The Electrochemical Society, 2014, 161(14):E191-E201 [12]Kulkarni S B, Mane A T, Navale S T, et al.Synthesis,structural,compositional,morphological and optoelectronic properties of tungsten oxide thin films[J].Journal of Materials Science: Materials in Electronics, 2015, 26(2):1087-1096 [13]Alsawafta M, Golestani Y M, Phonemac T, et al.Electrochromic properties of sol-gel synthesized macroporous tungsten oxide films doped with gold nanoparticles[J].Journal of The Electrochemical Society, 2014, 161(5):H276-H283 [14] Madhavi V, Kondaiah P, Hussain O M, et al.Structural, optical and electrochromic properties of RF magnetron sputtered WO3 thin films[J].Physica B: Condensed Matter, 2014, 454:141-147 [15]Tong M, Dai G, Wu Y, et al.WO3 thin film prepared by PECVD technique and its gas sensing properties to NO2[J].Journal of Materials Science, 2001, 36(10):2535-2538 [16] Denayer J, Aubry P, Bister G, et al.Improved coloration contrast and electrochromic efficiency of tungsten oxide films thanks to a surfactant-assisted ultrasonic spray pyrolysis process[J].Solar Energy Materials and Solar Cells, 2014, 130:623-628 [17]Navarro J R G, Mayence A, Andrade J, et al.WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions[J].Langmuir, 2014, 30(34):10487-10492 [18] Kondalkar V V, Kharade R R, Mali S S, et al.Nanobrick-like WO3 thin films: hydrothermal synthesis and electrochromic application[J].Superlattices and Microstructures, 2014, 73:290-295 [19]Kondalkar V V, Mali S S, Kharade R R, et al.High performing smart electrochromic device based on honeycomb nanostructured h-WO3 thin films: hydrothermal assisted synthesis[J].Dalton Transactions, 2015, 44(6):2788-2800 [20]Guo C, Yin S, Yan M, et al.Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties[J].Inorganic Chemistry, 2012, 51(8):4763-4771 [21]Xi G, Ouyang S, Li P, et al.Ultrathin W18O49 Nanowires with Diameters below 1 nm: Synthesis,Near-Infrared Absorption,Photoluminescence,and Photochemical Reduction of Carbon Dioxide[J].Angewandte Chemie International Edition, 2012, 51(10):2395-2399 [22]Zhao Y M, Hu W B, Xia Y D, et al.Preparation and characterization of tungsten oxynitride nanowires[J].Journal of Materials Chemistry, 2007, 17(41):4436-4440 [23]Sun S, Zhao Y, Xia Y, et al.Bundled tungsten oxide nanowires under thermal processing[J].Nanotechnology, 2008, 19(30):4436-4440 [24]Kunyapat T, Xu F, Neate N, et al.Ce-Doped bundled ultrafine diameter tungsten oxide nanowires with enhanced electrochromic performance[J].Nanoscale, 2018, 10(10):4718-4726 [25]Wang J, Khoo E, Lee P S, et al.Synthesis,assembly,and electrochromic properties of uniform crystalline WO3 nanorods[J].The Journal of Physical Chemistry C, 2008, 112(37):14306-14312 [26]Liu J W, Zheng J, Wang J L, et al.Ultrathin W18O49 nanowire assemblies for electrochromic devices[J].Nano letters, 2013, 13(8):3589-3593 [27]Zhou H, Shi Y, Dong Q, et al.Interlaced W18O49 nanofibers as a superior catalyst for the counter electrode of highly efficient dye-sensitized solar cells[J].Journal of Materials Chemistry A, 2014, 2(12):4347-4354 [28]Shirke Y M, Mukherjee S P.Selective synthesis of WO3 and W18O49 nanostructures: ligand-free pH-dependent morphology-controlled self-assembly of hierarchical architectures from 1D nanostructure and sunlight-driven photocatalytic degradation[J].CrystEngComm, 2017, 19(15):2096-2105 [29]Yue C, Zhu X, Rigutto M, et al.Acid catalytic properties of reduced tungsten and niobium-tungsten oxidesApplied Catalysis B: Environmental,2015,163: 370-381[J].CrystEngComm, 2014, 16(30):6866-6872 [30]Cai G F, Tu J P, Zhou D, et al.The direct growth of a WO3 nanosheet array on a transparent conducting substrate for highly efficient electrochromic and electrocatalytic applications[J].CrystEngComm, 2014, 16(30):6866-6872 [31]Lu C H, Hon M H, Kuan C Y, et al.Controllable synthesis of W18O49 nanowire arrays and their application in electrochromic devices[J].Journal of Materials Science, 2015, 50(17):5739-5745 |
相关文章 4
[1] | 周利民王一平黄群武刘峙嵘. 不同形貌ZnO纳米/微米晶粒的制备与光学特性[J]. , 2008, 8(2): 389-393. |
[2] | 刘兴芝;赵昌明;陈林;王燕;熊英. 三元多碲化物纳米晶的新方法制备及表征[J]. , 2007, 7(1): 168-171. |
[3] | 姜妲;翟玉春;陈元涛;龚睿;张炜. 乙二胺-水体系中合成氧化锌纳米带[J]. , 2006, 6(5): 841-844. |
[4] | 叶茵;袁方利;胡鹏;黎少华. 溶剂热法合成纳米级CoO粉体及其生长习性[J]. , 2006, 6(2): 327-330. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3246