1. 唐山学院环境与化学工程系,河北 唐山 063000 2. 中国矿业大学环境与测绘学院,江苏 徐州 221116 3. 唐山师范学院化学系,河北 唐山 063000
收稿日期:
2018-02-01修回日期:
2018-04-11出版日期:
2018-12-22发布日期:
2018-12-19通讯作者:
王鹏基金资助:
国家自然科学基金青年基金Adsorptive properties of methylene blue using biomass material based on rice husks by microwave-assisted activation
Qianqian ZHONG1*, Yaqin ZHAO2, Aibing WU1, Lei WANG3, Li SHEN1, Peng WANG11. Department of Environmental and Chemical Engineering, Tangshan University, Tangshan, Hebei 063000, China 2. China University of Mining and Technology, School of Environment Science and Spatial Informatics, Xuzhou, Jiangsu 221116, China 3. Department of Chemistry, Tangshan Normal University, Tangshan, Hebei 063000, China
Received:
2018-02-01Revised:
2018-04-11Online:
2018-12-22Published:
2018-12-19Contact:
peng wang 摘要/Abstract
摘要: 以KOH为活化剂,采用微波活化法处理农业废稻壳,制备生物质吸附材料,通过静态吸附实验考察了其对阳离子染料亚甲基蓝的吸附性能. 结果表明,所制生物质材料对亚甲基蓝的最大吸附量为109.9 mg/g,吸附过程符合伪二级动力学方程和Langmuir等温吸附模式,为快速吸附和单分子层吸附,膜扩散是速率控制步骤,吸附过程为生物质材料孔道内部物理吸附和O?H官能团吸附的共同作用.
引用本文
钟倩倩 赵雅琴 吴爱兵 王磊 沈丽 王鹏. 微波活化稻壳基生物质材料对亚甲基蓝的吸附性能[J]. 过程工程学报, 2018, 18(6): 1210-1218.
Qianqian ZHONG Yaqin ZHAO Aibing WU Lei WANG Li SHEN Peng WANG. Adsorptive properties of methylene blue using biomass material based on rice husks by microwave-assisted activation[J]. Chin. J. Process Eng., 2018, 18(6): 1210-1218.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218125
http://www.jproeng.com/CN/Y2018/V18/I6/1210
参考文献
[1] Reddy P M K, Verma P, Subrahmanyam C. Bio-waste derived adsorbent material for methylene blue adsorption [J]. Journal of the Taiwan Institute of Chemical Engineers, 2016, 58: 500-508. [2] ShenY S, Wang S L, Tzou Y M. Removal of hexavalent Cr by coconut coir and derived chars -The effect of surface functionality[J]. Bioresource Technology, 2012, 104: 165-172. [3] Marín M O, Prete V D, Moruno E G, et al. The development of an activated carbon from cherry stones and its use in the removal of ochratoxin A from red wine [J]. Food Control, 2009, 20: 298-303. [4] Daud W M A W, Ali W S W. Comparison on pore development of activated carbon produced from palm shell and coconut shell[J]. Bioresource Technology, 2004, 93: 63-69. [5] Deng H, Li G X, Yang H B, et al. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation[J]. Chemical Engineering Journal, 2010, 163: 373-381. [6] Ahmed M J,Theydan S K. Optimization of microwave preparation conditions for activated carbon from Albizia lebbeck seed pods for methylene blue dye adsorption[J]. Journal of Analytical and Applied Pyrolysis, 2014, 105: 199-208. [7] Abdolali A, Ngo H H, Guo W S, et al. Application of a breakthrough biosorbent for removing heavy metals from synthetic and real wastewaters in a lab-scale continuous ?xed-bed column[J]. Bioresource Technology, 2017, 229:78-87. [8] Hamdaoui, O. Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick[J]. Journal of Hazardous Materials, 2006, 135(1-3): 264-273. [9] Daneshvar E, Vazirzadeh A, Niazi A, et al. A comparative study of methylene blue biosorption using different modi?ed brown, red and green macroalgae-Effect of pretreatment[J].Chemical Engineering Journal, 2017, 307:435-446. [10] Vilar V J P, Botelho C M S, Boaventura R A R. Influence of pH, ionic strength and temperature on lead biosorption by gelidium and agar extraction algal waste[J]. Process Biochemistry, 2005, 40(10): 3267-3275. [11] Chik A, Donghee P, Seung H W, et al. Removal of cationic heavy metal from aqueous solution by activated carbon impregnated with anionic surfactants [J]. Journal of Hazardous Materials, 2009, 164(2-3): 1130-1136. [12] 张蕊, 葛滢. 表面活性剂改性活性炭对阳离子染料的吸附[J]. 环境工程学报, 2013, 7(6): 2233-2238. Zhang R, Ge Y. Adsorption of cationic dye by surfactant-modified activated carbon [J]. Chinese Journal of Environmental Engineering, 2013, 7(6): 2233-2238. [13] Gallardo M A M, Gonzalez G C M, Gonzalez M M L, et al. Arrangement of SDS adsorbed layer on carbonaceous particles by zeta potential determinations [J]. Colloids Surface, 2004, 249 (3): 57-62. [14] Pavasant P, Apiratikul R, Sungkhum V, et al. Biosorption of Cu2+, Cd2+, Pb2+, and Zn2+ using dried marine green macroalga Caulerpa lentillifera[J]. Bioresource Technology. 2006, 97(18): 2321-2329. [15] Xu X, Gao B Y, Huang X, et al. Physicochemical characteristics of epichlorohydrin, pyridine and trimethylamine functionalized cotton stalk and its adsorption/desorption properties for perchlorate[J]. Journal of Colloid and Interface Science, 2015, 440:219-228. [16] Jamwal H S, Kumari S, Chauhan G S, et al. Silica-polymer hybrid materials as methylene blue adsorbents[J]. Journal of Environmental Chemical Engineering, 2017, 5(1):103-113. [17] Novais R M, Ascens?o G, Tobaldi D M, et al. Biomass fly ash geopolymer monoliths for effective methylene blue removal from wastewaters[J]. J. Clean. Prod., 2018, 171:783-794. [18] Ding Z, Hu X, Zimmerman A R, et al. Sorption and cosorption of lead (ii) and methylene blue on chemically modified biomass[J]. Bioresource Technol., 2014, 167:569-573. [19] Albadarin A B, Collins M N, Naushad M, et al. Activated lignin-chitosan extruded blends for efficient adsorption of methylene blue[J]. Chemical Engineering Journal, 2017, 307: 264-272. [20] Mouni L, Belkhiri L, Bollinger J C, et al. Removal of Methylene Blue from aqueous solutions by adsorption on Kaolin: Kinetic and equilibrium studies[J]. Applied Clay Science, 2018, 153(1): 38-45. [21] 李倩. 新型阳离子聚合物/膨润土复合吸附材料的制备、表征及其吸附性能研究[D]. 济南: 山东大学,2008. Li Q. Formation and characteristics of cationic polymer/bentonite complex adsorbent and the study of its adsorption properties [D].Jinan: Shandong University, 2008. [22] 卫新来, 李聪, 金杰, 等. 梧桐树皮活性炭对刚果红的吸附性能[J]. 过程工程学报, 2017, 17(3): 484-490. Wei X L, Li C, Jin J, et al. Adsorption Properties of Sycamore Bark Activated Carbon for Conge Red[J]. The Chinese Journal of Process Engineering, 2017, 17(3): 484-490. [23] Kumar P S, Ramalingam S, Senthamarai C, et al. Adsorption of dye from aqueous solution by cashew nut shell: Studies on equilibrium isotherm, kinetics and thermodynamics of interactions[J]. Desalination, 2010, 261(1-2): 52-60. [24] Michelson L D, Gideon P G, Pace E G, et al. Removal of soluble mercury from wastewater by complexing techniques[R].U.S.D.I. Office of Water Research and Technology, Bulletin No. 74. [25] El-Khaiary M I, Malash G F. Common data analysis errors in batch adsorption studies[J]. Hydrometallurgy, 2011, 105: 314-320. [26] Mahmood T, Din S U, Naeem A, et al. Kinetics, equilibrium and thermodynamics studies of arsenate adsorption from aqueous solutions onto iron hydroxide[J]. Journal of Industrial and Engineering Chemistry, 2014, 20: 3234-3242. |
相关文章 15
[1] | 郭成 高翔鹏 李明阳 郝军杰 龙红明 赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展[J]. 过程工程学报, 2021, 21(1): 3-17. |
[2] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[3] | 贾韫翰 丁磊 任培月 李凌 王丹丹. 基于响应曲面法的磁性离子交换树脂去除甲基橙和刚果红的优化[J]. 过程工程学报, 2020, 20(9): 1035-1044. |
[4] | 杨帆 温良英 赵岩 徐健 张生富 杨仲卿. TiO2(100)表面C和Cl2吸附反应的第一性原理计算[J]. 过程工程学报, 2020, 20(5): 569-575. |
[5] | 薛岗 丁磊 高阳 钟梅英. 表面印迹耦合溶胶-凝胶法制备4-硝基酚印迹材料及性能表征[J]. 过程工程学报, 2020, 20(4): 440-448. |
[6] | 张晶晶 李建 肖清贵 张绘 杜嬛 薛天艳 齐涛. 纳米Co/rGO磁性复合吸附材料的制备及对Cu2+的吸附性能[J]. 过程工程学报, 2020, 20(12): 1472-1482. |
[7] | 杨建林 张宇鳌 马淑花 王晓辉. 不同粒径改性粉煤灰对磷酸根吸附性能的影响[J]. 过程工程学报, 2020, 20(11): 1281-1288. |
[8] | 殷若愚 陈云嫩 何彩庆 刘晨. 载铜树脂处理高含盐氨氮废水的性能[J]. 过程工程学报, 2020, 20(11): 1289-1295. |
[9] | 胡胜杰 黄永东 赵岚 朱凯 苗壮 王飞 晋洪超 李建 杨珺 汪和睦 马光辉 袁洪水. 基于疫苗颗粒完整性的硅胶吸附/解吸附纯化重组乙肝表面抗原 工艺研究[J]. 过程工程学报, 2020, 20(10): 1198-1209. |
[10] | 王爽 郭宏飞 赵斌 刘秀伍 曹吉林. 聚丙烯酸复合铝改性膨润土制备及其对Cr(VI)的吸附[J]. 过程工程学报, 2020, 20(1): 44-51. |
[11] | 刘佳慧 刘会婷 赵国英 孙振宇. 离子液体自模板合成多孔碳氮材料及其对二氧化碳的吸附[J]. 过程工程学报, 2020, 20(1): 108-115. |
[12] | 徐霞 吴云 赵勇 李宏强 彭敏 徐建. 微波烘焙预处理降解玉米秸秆[J]. 过程工程学报, 2019, 19(S1): 109-114. |
[13] | 张祎 宋强 舒新前. 生物质还原-磁选不锈钢酸洗污泥[J]. 过程工程学报, 2019, 19(6): 1111-1119. |
[14] | 杨时颖 郑经纬 李宝霞. 生物质制甲醇系统CO2捕集过程的设计模拟及技术经济性分析[J]. 过程工程学报, 2019, 19(6): 1250-1256. |
[15] | 王金德 裴海鹏 金保昇 戴昕 孙漪清. 高铝矾土改性对稻草热解与气化特性的影响[J]. 过程工程学报, 2019, 19(4): 783-791. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3167