1. 中国科学院成都有机化学研究所催化与环境工程研究中心,四川 成都 610041 2. 中国科学院过程工程研究所离子液体清洁过程北京市重点实验室,北京 100190 3. 中国科学院大学化工学院,北京 100049
收稿日期:
2018-05-08修回日期:
2018-06-19出版日期:
2018-11-22发布日期:
2018-11-19通讯作者:
晏冬霞基金资助:
国家自然科学基金;国家自然科学基金;四川省“****”顶尖创新团队Efficient conversion of waste cooking oil into biodiesel catalyzed by immobilized ionic liquid
Dongxia YAN1,2,3, Chunyan SHI2, Xingmei LÜ2,3, Jiayu XIN2*, Gongying WANG1*1. Catalytic and Environmental Engineering Research Center, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China 2. Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100090, China 3. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2018-05-08Revised:
2018-06-19Online:
2018-11-22Published:
2018-11-19摘要/Abstract
摘要: 采用溶胶?凝胶技术和浸渍法制备了固定化1-(4-丁基磺酸)-3-甲基咪唑硫酸氢盐([(n-Bu-SO3H)MIm][HSO4])离子液体(IL),得到了一种适用于游离脂肪酸和甲醇酯化反应的不溶性IL催化体系,对合成的催化剂进行了表征,并对其活性进行了系统评价. 结果表明,离子液体成功负载于载体上,该固定化Br?nsted性离子液体在油酸和甲醇酯化反应中具有非常好的催化活性,在最佳反应条件下,油酸的转化率高达98.4%. 该催化剂用于催化高游离脂肪酸含量的废弃食用油酯化时,经后续碱催化酯交换反应,可获得收率高达94.7%的生物柴油.
引用本文
晏冬霞 石春艳 吕兴梅 辛加余 王公应. 固定化离子液体高效催化废弃食用油合成生物柴油[J]. 过程工程学报, 2018, 18(S1): 129-137.
Dongxia YAN Chunyan SHI Xingmei Lü Jiayu XIN Gongying WANG. Efficient conversion of waste cooking oil into biodiesel catalyzed by immobilized ionic liquid[J]. Chin. J. Process Eng., 2018, 18(S1): 129-137.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.20180165
http://www.jproeng.com/CN/Y2018/V18/IS1/129
参考文献
[1] Ma F, Hanna M A. Biodiesel Production: a Review [J]. Bioresour. Technol., 1999, 70: 1-15. [2] Vafaeezadeh M, Hashemi M M. Efficient Fatty Acid Esterification Using Silica Supported Br?nsted Acidic Ionic Liquid Catalyst: Experimental Study and DFT Modeling [J]. Chem. Eng. J., 2014, 250: 35-41. [3] Zou C, Zhao P, Shi L, Huang S, Luo P. Biodiesel Fuel Production from Waste Cooking Oil by the Inclusion Complex of Heteropoly Acid with Bridged Bis-Cyclodextrin [J]. Bioresour. Technol., 2013, 146: 785-788. [4] Cao Y, Zhou H, Li J. Preparation of a Supported Acidic Ionic Liquid on Silica-Gel and its Application to the Synthesis of Biodiesel from Waste Cooking Oil [J]. Renewable Sustainable Energy Rev., 2016, 58: 871-875. [5] Farooq M, Ramli A, Subbarao D. Biodiesel Production from Waste Cooking Oil Using Bifunctional Heterogeneous Solid Catalysts [J]. J. Cleaner Prod., 2013, 59: 131-140. [6] Adewuyi A, Oderinde R A, Rao B V S K, Prasad R B N, Anjaneyulu B. Blighia Unijugata and Luffa Cylindrica Seed Oils: Renewable Sources of Energy for Sustainable Development in Rural Africa [J]. BioEnergy Res., 2012, 5: 713-718. [7] Lotero E, Liu Y J, Lopez D E, Suwannakarn K, Bruce D A, Goodwin J G. Synthesis of Biodiesel via Acid Catalysis [J]. Ind. Eng. Chem. Res., 2005, 44: 5353-5363. [8] Alca?iz-Monge J, Bakkali B E, Trautwein G, Reinoso S. Zirconia-Supported Tungstophosphoric Heteropolyacid as Heterogeneous Acid Catalyst for Biodiesel Production [J]. Appl. Catal. B: Environ., 2018, 224: 194-203. [9] Patel A, Brahmkhatri V, Singh N. Biodiesel Production by Esterification of Free Fatty Acid over Sulfated Zirconia [J]. Renew. Energ., 2013, 51: 227-233. [10] Hara M. Biodiesel Production by Amorphous Carbon Bearing SO3H, COOH and Phenolic OH Groups, a Solid Br?nsted Acid Catalyst [J]. Top. Catal., 2010, 53: 805-810. [11] Mo X, López D E, Suwannakarn K, Liu Y, Lotero E, Goodwin Jr J G, Lu C. Activation and Deactivation Characteristics of Sulfonated Carbon Catalysts [J]. J. Catal., 2008, 254: 332-338. [12] Dawodu F A, Ayodele O O, Xin J, Zhang S, Yan D. Effective Conversion of non-Edible Oil with High Free Fatty Acid into Biodiesel by Sulphonated Carbon Catalyst [J]. Appl. Energy, 2014, 114: 819-826. [13] Dawodu F A, Ayodele O O, Xin J, Zhang S. Application of Solid Acid Catalyst Derived from Low Value Biomass for a Cheaper Biodiesel Production [J]. J. Chem. Technol. Biotechnol., 2014, 89: 1898-1909. [14] Okamura M, Takagaki A, Toda M, Kondo J N, Domen K, Tatsumi T, Hara M, Hayashi S. Acid-Catalyzed Reactions on Flexible Polycyclic Aromatic Carbon in Amorphous Carbon [J]. Chem. Mater., 2006, 18: 3039-3045. [15] Wu Q, Wan H, Li H, Song H, Chu T. Bifunctional Temperature-Sensitive Amphiphilic Acidic Ionic Liquids for Preparation of Biodiesel [J]. Catal. Today, 2013, 200: 74-79. [16] Yan D, Xin J, Shi C, Lu X, Ni L, Wang G, Zhang S. Base-Free Conversion of 5-Hydroxymethylfurfural to 2,5-Furandicarboxylic Acid in Ionic Liquids [J]. Chem. Eng. J., 2017, 323: 473-482. [17] Yan D, Wang G, Gao K, Lu X, Xin J, Zhang S. One-Pot Synthesis of 2,5-Furandicarboxylic Acid from Fructose in Ionic Liquids [J]. Ind. Eng. Chem. Res., 2018, 57: 1851-1858. [18] Quental M V, Caban M, Pereira M M, Stepnowski P, Coutinho J A P, Freire M G. Enhanced Extraction of Proteins Using Cholinium-Based Ionic Liquids as Phase-Forming Components of Aqueous Biphasic Systems [J]. Biotechnol. J., 2015, 10: 1457-1466. [19] Mohammad Fauzi A H, Saidina Amin N A. Optimization of Oleic Acid Esterification Catalyzed by Ionic Liquid for Green Biodiesel Synthesis [J]. Energy Convers. Manage., 2013, 76: 818-827. [20] Masri A N, Mutalib M I A, Aminuddin N F, Lévêque J M. Novel SO3H-Functionalized Dicationic Ionic Liquids-a Comparative Study for Esterification Reaction by Ultrasound Cavitation and Mechanical Stirring for Biodiesel Production [J]. Sep. Purif. Technol., 2018, 196: 106-114. [21] Jamil F, Al-Haj L, Al-Muhtaseb A H, Al-Hinai M A, Baawain M, Rashid U, Ahmad M N M. Current Scenario of Catalysts for Biodiesel Production: a Critical Review [J]. Rev. Chem. Eng., 2018, 34: 267-297. [22] Wang Y Q, Zhao D, Wang L L, Wang X Q, Li L J, Xing Z P, Ji N, Liu S J, Ding H. Immobilized Phosphotungstic Acid Based Ionic Liquid: Application for Heterogeneous Esterification of Palmitic Acid. Fuel, 2018, 216: 364-370. [23] Wu Q, Chen H, Han M, Wang D, Wang J. Transesterification of Cottonseed Oil Catalyzed by Br?nsted Acidic Ionic Liquids [J]. Ind. Eng. Chem. Res., 2007, 46: 7955-7960. [24] Guo F, Fang Z, Tian X-F, Long Y-D, Jiang L-Q. One-Step Production of Biodiesel from Jatropha Oil with High-Acid Value in Ionic Liquids [J]. Bioresour. Technol., 2011, 102: 6469-6472. [25] Zhang L, Cui Y, Zhang C, Wang L, Wan H, Guan G. Biodiesel Production by Esterification of Oleic Acid over Br?nsted Acidic Ionic Liquid Supported onto Fe-Incorporated SBA-15 [J]. Ind. Eng. Chem. Res., 2012, 51: 16590-16596. [26] Elsheikh Y A, Man Z, Bustam M A, Yusup S, Wilfred C D. Br?nsted Imidazolium Ionic Liquids: Synthesis and Comparison of Their Catalytic Activities as Pre-Catalyst for Biodiesel Production through Two Stage Process [J]. Energy Convers. Manage., 2011, 52: 804-809. [27] Zhao H, Yu N, Ding Y, Tan R, Liu C, Yin D, Qiu H, Yin D. Task-Specific Basic Ionic Liquid Immobilized on Mesoporous Silicas: Efficient and Reusable Catalysts for Knoevenagel Condensation in Aqueous Media [J]. Microporous Mesoporous Mater., 2010, 136: 10-17. [28] Yang Y, Du Z, Ma J, Lu F, Zhang J, Xu J. Biphasic Catalytic Conversion of Fructose by Continuous Hydrogenation of HMF over a Hydrophobic Ruthenium Catalyst [J]. ChemSuschem, 2014, 7: 1352-1356. [29] Maton C, De Vos N, Stevens C V. Ionic Liquid Thermal Stabilities: Decomposition Mechanisms and Analysis Tools [J]. Chem. Soc. Rev., 2013, 42: 5963-5977. [30] Dong K, Zhang S. Hydrogen Bonds: a Structural Insight into Ionic Liquids [J]. Chem. Eur. J., 2012, 18: 2748-2761. [31] Shu Q, Gao J, Nawaz Z, Liao Y, Wang D, Wang J. Synthesis of Biodiesel from Waste Vegetable Oil with Large Amounts of Free Fatty Acids Using a Carbon-Based Solid Acid Catalyst [J]. Appl. Energy, 2010, 87: 2589-2596. [32] Zhang W, Li M, Wang J, Zhao Y, Zhou S, Xing W. Heterogeneous Poly(Ionic Liquids) Catalyst on Nanofiber-Like Palygorskite Supports for Biodiesel Production [J]. Appl. Clay. Sci., 2017, 146: 167-175. [33] Senoymak Tarakc? M I, Ilgen O. Esterification of Oleic Acid with Methanol Using Zr(SO4)2 as a Heterogeneous Catalyst [J]. Chem. Eng. Technol., 2018, 41: 845-852. [34] Prinsen P, Luque R, González-Arellano C. Zeolite Catalyzed Palmitic Acid Esterification [J]. Microporous Mesoporous Mater., 2018, 262: 133-139. [35] Shu Q, Tang G, Lesmana H, Zou L, Xiong D. Preparation, Characterization and Application of a Novel Solid Br?nsted Acid Catalyst SO42/La3+/C for Biodiesel Production via Esterification of Oleic Acid and Methanol [J]. Renew. Energ., 2018, 119: 253-261. |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 郑征 何宏艳. 基于全球专利信息的离子液体领域发展态势分析[J]. 过程工程学报, 2021, 21(4): 383-393. |
[3] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[4] | 潘凤娇 周乐 曾少娟 刘雪 刘艳荣 聂毅. 离子液体/羊毛纤维/凝固剂三元相图的构建[J]. 过程工程学报, 2021, 21(2): 160-166. |
[5] | 王雨晴 刘居陶 徐琴琴 银建中. 超临界流体沉积制备[Emim][BF4]支撑型离子液体膜及其气体分离性能[J]. 过程工程学报, 2021, 21(2): 134-143. |
[6] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[7] | 张家赫 邢春贤 张海涛. 纳米SiO2填料对离子凝胶电解质及高压超级电容器性能的影响[J]. 过程工程学报, 2020, 20(3): 354-361. |
[8] | 刘佳慧 刘会婷 赵国英 孙振宇. 离子液体自模板合成多孔碳氮材料及其对二氧化碳的吸附[J]. 过程工程学报, 2020, 20(1): 108-115. |
[9] | 郑征 霍锋 王瑜. 基于文献计量的离子液体领域研究现状及发展趋势[J]. 过程工程学报, 2019, 19(5): 890-899. |
[10] | 张逸水 王霜 李法社. 地沟油生物柴油在旋流喷嘴中的雾化实验及模拟[J]. 过程工程学报, 2019, 19(5): 940-948. |
[11] | 许海洋 孟祥展 夏大厦 惠岚峰 王慧. 功能化离子液体萃取分离甘氨酸[J]. 过程工程学报, 2019, 19(3): 544-552. |
[12] | 王均利 曾少娟 陈能 尚大伟 张香平 李建伟. 氨气吸附材料的研究进展[J]. 过程工程学报, 2019, 19(1): 14-24. |
[13] | 吴文亮 李涛 高红帅 尚大伟 涂文辉 王斌琦 张香平. 咪唑类离子液体高效吸收二氯甲烷[J]. 过程工程学报, 2019, 19(1): 173-180. |
[14] | 刘云竹 符晓芳 高丽华 雷连彩 王轶博. 1,3-二乙酸咪唑磷钨酸盐的制备及其对甲基红的光催化降解性能[J]. 过程工程学报, 2018, 18(S1): 146-152. |
[15] | 张德谨 谢永 李梦玉 徐开兵 吴晶玲 孙欢欢 童家横. 微波辅助玉米油基生物柴油制备及酯化反应动力学[J]. 过程工程学报, 2018, 18(4): 845-850. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3161