删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

耦合相变储热的金属氢化物反应器吸氢过程模拟

本站小编 Free考研考试/2022-01-01

尧兢,朱鹏飞,任佳伟,吴震*
西安交通大学化学工程与技术学院,陕西 西安 710049
收稿日期:2017-12-22修回日期:2018-02-07出版日期:2018-10-22发布日期:2018-10-12
通讯作者:吴震

基金资助:国家自然科学基金资助项目;陕西省自然科学基金;中国博士后科学基金

Simulation on hydrogen absorption process of metal hydride based hydrogen storage reactor coupled with phase-change thermal storage

Jing YAO, Pengfei ZHU, Jiawei REN, Zhen WU*
School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
Received:2017-12-22Revised:2018-02-07Online:2018-10-22Published:2018-10-12


Supported by:The National Natural Science Foundation of China




摘要/Abstract


摘要: 基于金属氢化物储氢反应,建立了相变材料蓄热的固体储氢反应器模型,模拟研究了吸氢压力等操作参数及相变材料的相变温度、固(液)态导热系数、相变潜热等物性参数对固体储氢反应器工作过程的影响. 结果表明,相变材料的固态导热系数和相变潜热对固体储氢反应器性能的影响较小,相变温度和液态导热系数对反应器性能影响较大. 相变温度越低,液态导热系数越大,储氢反应器性能越好. 在使用最优的相变材料储能时,提高充入氢气的压力可加快反应速率,强化相变材料的传热,有助于进一步优化反应器的储氢性能.

引用本文



尧兢 朱鹏飞 任佳伟 吴震. 耦合相变储热的金属氢化物反应器吸氢过程模拟[J]. 过程工程学报, 2018, 18(5): 1093-1101.
Jing YAO Pengfei ZHU Jiawei REN Zhen WU. Simulation on hydrogen absorption process of metal hydride based hydrogen storage reactor coupled with phase-change thermal storage[J]. Chin. J. Process Eng., 2018, 18(5): 1093-1101.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217438
http://www.jproeng.com/CN/Y2018/V18/I5/1093







[1]梁慧.日本氢能源技术发展战略及启示[J].国际石油经济, 2016, 24(8):87-95
[2]Liang H.the Development Strategy of Japan’s Hydrogen Energy Technology and its Enlightenment[J].International Petroleum Economics, 2016, 24(8):87-95
[3]许炜,陶占良,陈军.储氢研究进展[J].化学进展, 2006, 18(2):200-210
[4]Xu W, Tao Z L, Chen J.Progress of Research on Hydrogen Storage[J].Progress in Chemistry, 2006, 18(2):200-210
[5] 郭浩,杨洪海.固体储氢材料的研究现状及发展趋势[J].化工新型材料, 2016, 9(0):19-21
[6]Guo H, Yang H H.Current Status and Future Prospect of Research on Solid-state Hydrogen Storage Material[J].New Chemical Materials, 2016, 9(0):16-21
[7]黄明宇,冯小保,厉丹彤,等.车载储氢技术的发展现状及展望[J].现代化工, 2013, 33(7):1-5
[8]Huang M Y, Feng X B, Li D T, et al.Development Status and Prospect of Onboard Hydrogen Storage Technology[J].Modern Chemical Industry, 2013, 33(7):1-5
[9]陈军,朱敏.高容量储氢材料的研究进展[J].中国材料进展, 2009, 28(5):2-10
[10]Chen J, Zhu M.Progress in Research of Hydrogen Storage Materials with High Capacity[J].Materials China, 2009, 28(5):2-10
[11]邵玉艳,尹鸽平,高云智.氢经济面临的机遇与挑战[J].电源技术, 2005, 29(6):410-415
[12]Shao Y Y, Yin G P, Gao Y Z.Opportunities and Challenges for Hydrogen Economy[J].Chinese Journal of Power Sources, 2005, 29(6):410-415
[13]徐丽,马光,盛鹏,等.储氢技术综述及在氢储能中的应用展望[J].智能电网, 2016, 4(2):166-171
[14]Xu L, Ma G, Sheng P, et al.Overview of Hydrogen Storage Technologies and Their Application Prospects in Hydrogen-based Energy Storage[J].Smart Grid, 2016, 4(2):166-171
[15]Mazzucco A, Dornheim M, Sloth M, et al.Bed Geometries,Fueling Strategies and Optimization of Heat Exchanger Designs in Metal Hydride Storage Systems for Automotive Applications: A Review[J].International Journal of Hydrogen Energy, 2014, 39(30):17054-17074
[16]Sha?ee S, McCay M.Different Reactor and Heat Exchanger Con?gurations for Metal Hydride Hydrogen Storage Systems: A Review[J].International Journal of Hydrogen Energy, 2016, 41(22):9462-9470
[17]Raju M, Kumar S.Optimization of Heat Exchanger Designs in Metal Hydride Based Hydrogen Storage Systems[J].International Journal of Hydrogen Energy, 2012, 37(3):2767-2778
[18]Ma J C, Wang Y Q, Shi S F, et al.Optimization of Heat Transfer Device and Analysis of Heat & Mass Transfer on the Finned Multi-tubular Metal Hydride Tank[J].International Journal of Hydrogen Energy, 2014, 39(25):13583-13595
[19] Yan M Y, Sun F, Liu X P, et al.Effects of Graphite Content and Compaction Pressure on Hydrogen Desorption Properties of Mg(NH2)2 -2LiH Based Tank[J].Journal of Alloys and Compounds, 2015, 628(0):63-67
[20] Chung C A, Yang S W, Yang C Y, et al.Experimental Study on the Hydrogen Charge and Discharge Rates of Metal Hydride Tanks using Heat Pipes to Enhance Heat Transfer[J].Applied Energy, 2013, 103(0):581-587
[21]鲍泽威,杨福胜,吴震,等.金属氢化物反应器内吸氢过程热质传递特性的多物理场分析[J].西安交通大学学报, 2012, 46(9):49-54
[22]Bao Z W, Yang F S, Wu Z, et al.Analysis on Heat and Mass Transfer Characteristics of Mental Hydride Reactors During Adsorption[J].Journal of Xi' an Jiaotong University, 2012, 46(9):49-54
[23]Weckerle C, Burger I, Linder M.Novel Reactor Design for Metal Hydride Cooling Systems[J].International Journal of Hydrogen Energy, 2017, 42(12):8063-8074
[24]孙建强,张仁元.金属相变储能与技术的研究与发展[J].材料导报, 2005, 19(8):99-101
[25]Sun J Q, Zhang R Y.Review of Thermal Energy Storage with Metal Phase Change Materials[J].Materials Review, 2005, 19(8):99-101
[26]Zanganeh G, Commerford M, Haselbacher A, et al.Stabilization of the Out?ow Temperature of a Packed-bed Thermal Energy Storage by Combining Rocks with Phase Change Materials[J].Applied Thermal Engineering, 2014, 70(1):316-320
[27]Toppi T, Mazzarella L, et al.Gypsum Based Composite Materials with Micro-encapsulated PCM: Experimental Correlations for Thermal Properties Estimation on the Basis of the Composition[J].Energy and Buildings, 2013, 57(2):227-236
[28]Garrier S.Delhomme B,Rango P,et ala New MgH2 Tank Concept Using a Phase-change Material to Store the Heat of Reaction[J].International Journal of Hydrogen Energy, 2013, 38(23):9766-9771
[29]MacDonald B D, Rowe A M.Impacts of External Heat Transfer Enhancements on Metal Hydride Storage Tanks[J].International Journal of Hydrogen Energy, 2006, 31(12):1721-1731
[30]Wang Y Q, Yang F S, Meng X Y, et al.Simulation Study on the Reaction Process Based Single Stage Metal Hydride Thermal Compressor[J].International Journal of Hydrogen Energy, 2010, 35(1):321-328
[31] Tatsidjodoung P, Pierres N L, Luo L.a Review of Potential Materials for Thermal Energy Storage in Building Applications[J].Renewable and Sustainable Energy Reviews, 2013, 18(0):327-349
[32] Nam J, Ko J, Ju H.Three-dimensional Modeling and Simulation of Hydrogen Absorption in Metal Hydride Hydrogen Storage Vessels[J].Applied Energy, 2012, 89(0):164-175
[33]Jemni A, Nasrallah S B, Lamloumi J.Experimental and Theoretical Study of a Metal-hydrogen Reactor[J].International Journal of Hydrogen Energy, 1999, 24(7):631-644




[1]何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409.
[2]周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419.
[3]郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285.
[4]王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250.
[5]史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26.
[6]杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45.
[7]岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958.
[8]陶文 张 毅 孔祥法 张晚春 樊传刚. 无机水合盐相变材料过冷度抑制方法的研究进展[J]. 过程工程学报, 2020, 20(6): 619-627.
[9]王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744.
[10]王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520.
[11]王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539.
[12]张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284.
[13]王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157.
[14]吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423.
[15]卢金霖 张东升 罗志国 邹宗树. 旋流中间包夹杂物碰撞去除的数值模拟[J]. 过程工程学报, 2020, 20(12): 1432-1438.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3138
相关话题/过程 工程 材料 技术 金属