天津大学环境科学与工程学院,天津 300350
收稿日期:
2017-10-20修回日期:
2017-12-27出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
薄涛基金资助:
天津市应用基础与前沿技术研究计划(青年项目);天津大学自主创新基金Feasibility analysis for lead recovery in cylinder-shape, single-chamber microbial fuel cell with stainless steel electrodes
Tao BO, Min JI*College of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
Received:
2017-10-20Revised:
2017-12-27Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 以筒状单室不锈钢电极微生物燃料电池(MFC)为对象,研究了去除其其中铅的可行性. 结果表明,在批式条件下,当初始Pb2+浓度为40 mg/L、pH为4.0时,Pb2+去除速度和效率分别达0.53±0.06 mg/(L?h)和96.71%±1.35%,最终以碱式碳酸铅的形式回收Pb2+. Pb2+去除过程中首先在MFC作用下还原成单质铅,再因暴露在空气中转化为碱式碳酸铅,但该MFC的电化学性能相对较低,输出电压、功率密度和库仑效率只有30.62±1.04 mV, 8.20±0.24 mW/m2和5.92%±0.21%.
引用本文
薄涛 季民. 筒状单室不锈钢电极微生物燃料电池回收重金属铅可行性分析[J]. 过程工程学报, 2018, 18(4): 858-865.
Tao BO Min JI. Feasibility analysis for lead recovery in cylinder-shape, single-chamber microbial fuel cell with stainless steel electrodes[J]. Chin. J. Process Eng., 2018, 18(4): 858-865.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217366
http://www.jproeng.com/CN/Y2018/V18/I4/858
参考文献
[1] Lovley DR, Phillips EJ. Novel mode of microbial energy metabolism: organic carbon oxidation coupled to dissimilatory reduction of iron or manganese. Appl Environ Microbiol, 1988, 54(6): 1472-80 [2] Wang G, Huang L, Zhang Y. Cathodic reduction of hexavalent chromium [Cr(VI)] coupled with electricity generation in microbial fuel cells. Biotechnol Lett, 2008, 30(11): 1959-66 [3] Li Y, Lu AH, Ding HR, et al. Cr(VI) reduction at rutile-catalyzed cathode in microbial fuel cells. Electrochemistry Communications, 2009, 11(7): 1496-1499 [4] Tandukar M, Huber SJ, Onodera T, et al. Biological chromium(VI) reduction in the cathode of a microbial fuel cell. Environ Sci Technol, 2009, 43(21): 8159-65 [5] Huang L, Chen J, Quan X, et al. Enhancement of hexavalent chromium reduction and electricity production from a biocathode microbial fuel cell. Bioprocess Biosyst Eng, 2010, 33(8): 937-45 [6] Huang L, Chai X, Chen G, et al. Effect of set potential on hexavalent chromium reduction and electricity generation from biocathode microbial fuel cells. Environ Sci Technol, 2011, 45(11): 5025-31 [7] Huang LP, Chai XL, Cheng SA, et al. Evaluation of carbon-based materials in tubular biocathode microbial fuel cells in terms of hexavalent chromium reduction and electricity generation. Chemical Engineering Journal, 2011, 166(2): 652-661 [8] Liu L, Yuan Y, Li F-B, et al. In-situ Cr(VI) reduction with electrogenerated hydrogen peroxide driven by iron-reducing bacteria. Bioresour Technol, 2011, 102(3): 2468-2473 [9] Heijne AT, Liu F, Weijden R, et al. Copper recovery combined with electricity production in a microbial fuel cell. Environ Sci Technol, 2010, 44(11): 4376-81 [10] Wang Z, Lim B, Lu H, et al. Cathodic Reduction of Cu2+ and Electric Power Generation Using a Microbial Fuel Cell. Bulletin of the Korean Chemical Society, 2010, 31(7): 2025-2030 [11] Tao HC, Li W, Liang M, et al. A membrane-free baffled microbial fuel cell for cathodic reduction of Cu(II) with electricity generation. Bioresour Technol, 2011, 102(7): 4774-8 [12] Tao HC, Liang M, Li W, et al. Removal of copper from aqueous solution by electrodeposition in cathode chamber of microbial fuel cell. J Hazard Mater, 2011, 189(1-2): 186-92 [13] Cheng SA, Wang BS, Wang YH. Increasing efficiencies of microbial fuel cells for collaborative treatment of copper and organic wastewater by designing reactor and selecting operating parameters. Bioresour Technol, 2013, 147: 332-7 [14] 梁敏, 陶虎春, 李绍峰, et al. 剩余污泥为底物的微生物燃料电池处理含铜废水. 环境科学, 2011, 32(1): 179-185 [15] 李浩然, 冯雅丽, 邹晓阎, et al. 钒冶金废水微生物异化还原过程. 中国有色金属学报, 2009, 19(9): 1700-1705 [16] Zhang BG, Zhou SG, Zhao HZ, et al. Factors affecting the performance of microbial fuel cells for sulfide and vanadium (V) treatment. Bioprocess Biosyst Eng, 2010, 33(2): 187-94 [17] Wang Z, Lim B, Choi C. Removal of Hg2+ as an electron acceptor coupled with power generation using a microbial fuel cell. Bioresour Technol, 2011, 102(10): 6304-7 [18] Segundo JEDV, Salazar-Banda GR, Feitoza ACO, et al. Cadmium and lead removal from aqueous synthetic wastes utilizing Chemelec electrochemical reactor: Study of the operating conditions. Separation and Purification Technology, 2012, 88: 107-115 [19] Li Y, Zhang B, Cheng M, et al. Spontaneous arsenic (III) oxidation with bioelectricity generation in single-chamber microbial fuel cells. Journal of Hazardous Materials, 2016, 306: 8-12 [20] Yin Q, Zhu X, Zhan G, et al. Enhanced methane production in an anaerobic digestion and microbial electrolysis cell coupled system with co-cultivation of Geobacter and Methanosarcina. Journal of Environmental Sciences, 2016, 42: 210-4 [21] Wei LL, Han HL, Shen JQ. Effects of cathodic electron acceptors and potassium ferricyanide concentrations on the performance of microbial fuel cell. International Journal of Hydrogen Energy, 2012, 37(17): 12980-12986 [22] Wang Z, Zheng Y, Xiao Y, et al. Analysis of oxygen reduction and microbial community of air-diffusion biocathode in microbial fuel cells. Bioresour Technol, 2013, 144: 74-9 [23] 李颖, 孙永明, 孔晓英, et al. 微生物燃料电池中产电微生物的研究进展. 微生物 学通报, 2009, 36(9): 1404-1409 [24] Liu M, Shao J, Zhou B, et al. Progress in Research of Microbial Electricigenic Respiration(Chinese). Chinese Journal of Appplied Environmental Biology, 2010, 16(3): 445-452 [25] 赵丹, 谭金山, 郭培志, et al. 碱式碳酸铅单晶胶体纳米结构的低温液相合成与表征. 科学技术与工程, 2009, 9(24): 7452-7459 [26] 董传山, 李加智, 孙中溪. 碳酸铅及碱式碳酸铅的合成与转化. 济南大学学报(自然科学版), 2012, 26(1): 73-77 [27] Cao X, Ma LQ, Chen M, et al. Lead transformation and distribution in the soils of shooting ranges in Florida, USA. Sci Total Environ, 2003, 307(1-3): 179-89 |
相关文章 15
[1] | 丁建军 彭小伟 韩业君. 厌氧活性污泥产电特性及产电过程微生物群落变化[J]. 过程工程学报, 2019, 19(1): 209-215. |
[2] | 任红威 连少翰 王雪 张优 张金峰 段二红. 低共熔溶剂取代危化品的应用进展[J]. 过程工程学报, 2018, 18(S1): 1-13. |
[3] | 张小婷彭罗李振轮. 基于降低阳极活化过电势的MFC性能优化研究进展[J]. , 2014, 14(3): 527-534. |
[4] | 宋天顺吴夏芫范平周楚新. 以加热预处理污泥上清液为底物的微生物燃料电池基础特性[J]. , 2012, 12(5): 844-848. |
[5] | 吴夏芫宋天顺支银芳周楚新俞俊杰朱隽瑶. 小球藻生物阴极型微生物燃料电池的基础特性[J]. , 2012, 12(1): 131-135. |
[6] | 陈虹陈蔚青张建芬. 水-聚丙二醇两相体系中生物转化法合成2-苯乙醇[J]. , 2011, 11(5): 782-785. |
[7] | 岳学海赵书菊王许云郭庆杰. 厌氧流化床无膜微生物燃料电池的床层膨胀高度与产电特性[J]. , 2011, 11(2): 199-203. |
[8] | 董悦生齐珊珊刘琳修志龙. 米曲霉直接转化盾叶薯蓣生产薯蓣皂苷元[J]. , 2009, 9(5): 993-998. |
[9] | 叶晔捷宋天顺徐源陈英文祝社民沈树宝. 微生物燃料电池产电的影响因素[J]. , 2009, 9(3): 526-530. |
[10] | 李顶杰何辉卢翠香李浩然杜竹玮. 串/并联微生物燃料电池的性能[J]. , 2009, 9(2): 338-343. |
[11] | 李丹林建群林慧彬林建强曲音波. 生物转化法生产L-苯基乙酰基甲醇的研究进展[J]. , 2009, 9(1): 190-199. |
[12] | 何辉冯雅丽李浩然李顶杰. 利用小球藻构建微生物燃料电池[J]. , 2009, 9(1): 133-137. |
[13] | 徐源宋天顺叶晔捷陈英文沈树宝沈树宝. 直接微生物燃料电池阴极的制备及优化[J]. , 2008, 8(5): 998-1002. |
[14] | 李少华;杜竹玮;祝学远;刘巍;傅德贤;李浩然. Rhodoferax ferrireducens微生物燃料电池中钒化合物的催化性能[J]. , 2007, 7(3): 589-593. |
[15] | 祝学远;冯雅丽;李少华;李浩然;杜竹玮;罗小兵. 单室直接微生物燃料电池的阴极制作及构建[J]. , 2007, 7(3): 594-597. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3110