中山大学工学院, 广东 广州 510006
收稿日期:
2017-08-21修回日期:
2017-10-19出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
郭开华基金资助:
国家自然科学基金资助项目Process Characteristics on Replacement of Bulk-methane Hydrates with Liquid Cardon Dioxide
Fengqi ZHANG, Guoxing CHEN, Kaihua GUO*, Aohan DUSchool of Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510006, China
Received:
2017-08-21Revised:
2017-10-19Online:
2018-06-22Published:
2018-06-06Supported by:
National Science Fund subsidized project摘要/Abstract
摘要: 通过可视化水合物反应装置和影像设备,研究了注入液态CO2分解CH4水合物同时原位生成气体水合物并保持整块水合物结构稳定的完整过程,验证了水合物分解和生成同时进行的第二类原位置换过程的可行性. 通过控制压力实现在CO2?CH4混合水合物四相区(水合物?水?液相?气相)的CH4置换过程,得到富CH4气体产物. 通过分析气相色谱和测定产气量得到CH4产气特性和CO2对CH4水合物的置换率. 结果表明,低压有利于获得较优的置换效果,4.5 MPa下的置换过程较5 MPa时产气量提高14.6%,甲烷水合物置换率提高13.7%.
引用本文
张凤琦 陈国兴 郭开华 杜奥涵. 液态二氧化碳置换整形甲烷水合物过程特性[J]. 过程工程学报, 2018, 18(3): 639-645.
Fengqi ZHANG Guoxing CHEN Kaihua GUO Aohan DU. Process Characteristics on Replacement of Bulk-methane Hydrates with Liquid Cardon Dioxide[J]. Chin. J. Process Eng., 2018, 18(3): 639-645.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217304
http://www.jproeng.com/CN/Y2018/V18/I3/639
参考文献
[1] Chong Z R, Yang S H B, Babu P, et al. Review of natural gas hydrates as an energy resource: Prospects and challenges[J]. Applied Energy,2016, 162: 1633-1652. [2] Anderson B J, Boswell R, Collett T S, et al. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial[Z]. Beijing, China: China Geological Survey, 2014. [3] Makogon Y F, Omelchenko R Y. Commercial gas production from Messoyakha deposit in hydrate conditions[J]. Journal of Natural Gas Science and Engineering,2013, 11(3): 1-6. [4] Collett T, Bahk J, Frye M, et al. Historical methane hydrate project review[R]. Washington D.C.: Department of Energy, USA, 2013. [5] Yamamoto K. Overview and introduction: Pressure core-sampling and analyses in the 2012–2013 MH21 offshore test of gas production from methane hydrates in the eastern Nankai Trough[J]. Marine and Petroleum Geology, 2015, 66(2): 296-309. [6] 祝有海,赵省民,卢振权. 中国冻土区天然气水合物的找矿选区及其资源潜力[J]. 天然气工业,2011,31(1): 13-19. Zhu Y H,Zhao S M,Lu Z Q. Prospecting of Natural Gas Hydrate in Permafrost Regions of China and Resource Potential[J]. Natural Gas Industry,2011,31(1):13-19. [7] 王南,裴玲,雷丹凤,等. 中国非常规天然气资源分布及开发现状[J]. 油气地质与采收率,2015,22(1): 26-31. Wang N,Pei L,Lei D F,et al. Distribution and Development of Unconventional Natural Gas Resources in China[J]. Petroleum Geology and Recovery Efficiency,2015,22(1):26-31. [8] 广州海洋地质调查局. 中国地调局广州海洋局“十二五” 重点成果回顾(一)在南海天然气水合物资源勘查研究取得重大突破[Z]. 2016. Guangzhou Marine Geological Survey. China Meteorological Administration Guangzhou Oceanic Administration “12th Five-Year”key results review(1) Significant breakthroughs have been made in the exploration of natural gas hydrate resources in the South China Sea [Z].2016. [9] Chen Z, Feng J, Li X, et al. Preparation of Warm Brine in Situ Seafloor Based on the Hydrate Process for Marine Gas Hydrate Thermal Stimulation[J]. Industrial & Engineering Chemistry Research.,2014, 53(36): 14142-14157. [10] Fan S, Zhang Y, Tian G, et al. Natural Gas Hydrate Dissociation by Presence of Ethylene Glycol[J]. Energy & Fuels,2006, 20(1): 324-326. [11] 张旭辉,鲁晓兵,刘乐乐. 天然气水合物开采方法研究进展[J]. 地球物理学进展, 2014,29(2): 858-869. Zhang X H,Lu X B,Liu L L. Research Progress of Natural Gas Hydrate Mining Method[J]. Progress in Geophysics,2014,29(2):858-869. [12] Ebinuma T. Method for dumping and disposing of carbon dioxide gas and apparatus therefor:US 07/846,290 [P]. 1993-11-16. [13] Ohgaki K, Takano K, Sangawa H, et al. Methane Exploitation by Carbon Dioxide from Gas Hydrates-Phase Equilibria for CO2-CH4 Mixed Hydrate System[J]. Journal of Chemical Engineering of Japan, 1996, 29(3): 478-483. [14] Goel N. In situ methane hydrate dissociation with carbon dioxide sequestration: Current knowledge and issues[J]. Journal of Petroleum Science and Engineering,2006, 51(3-4): 169–184. [15] Ota M, Saito T, Aida T, et al. Macro and microscopic CH4-CO2 replacement in CH4 hydrate under pressurized CO2[J]. AICHE JOURNAL,2007, 53(10): 2715-2721. [16] Ota M, Abe Y, Watanabe M, et al. Methane recovery from methane hydrate using pressurized CO2[J]. Fluid Phase Equilibria,2005, 228-229(3): 553-559. [17] Bi Y, Yang T, Guo K. Determination of the upper-quadruple-phase equilibrium region for carbon dioxide and methane mixed gas hydrates[J]. Journal of Petroleum Science and Engineering, 2013, 101(2): 62-67. [18] Ersland G, Huseb? J, Graue A, et al. Measuring gas hydrate formation and exchange with CO2 in Bentheim sandstone using MRI tomography[J]. Chemical Engineering Journal, 2010, 158(1): 25-31. [19] Jung J W, Espinoza D N, Santamarina J C. Properties and phenomena relevant to CH4-CO2 replacement in hydrate-bearing sediments[J]. Journal of Geophysical Research, 2010, 115(B10):155-162. [20] Jung J W, Santamarina J C. CH4-CO2 replacement in hydrate-bearing sediments: A pore-scale study[J]. Geochemistry, Geophysics, Geosystems, 2010, 11(12):68-82. [21] Yoon J, Kawamura T, Yamamoto Y, et al. Transformation of Methane Hydrate to Carbon Dioxide Hydrate: In Situ Raman Spectroscopic Observations[J]. The Journal of Physical Chemistry A, 2004, 108(23): 5057-5059. [22] Ota M, Morohashi K, Abe Y, et al. Replacement of CH4 in the hydrate by use of liquid CO2[J]. Energy Conversion and Management, 2005, 46(11): 1680-1691. [23] Anderson B J, Boswell R, Collett T S, et al. Review of the findings of the Ignik Sikumi CO2-CH4 gas hydrate exchange field trial[C]. Beijing, China: China Geological Survey, 2014. [24] Brewer P G, Peltzer E T, Walz P M, et al. Deep-Sea Field Test of the CH4 Hydrate to CO2 Hydrate Spontaneous Conversion Hypothesis[J]. Energy & Fuels, 2014, 28(11): 7061-7069. [25] 郑新,孙志高,樊栓狮,等. 天然气水合物储气实验研究[J]. 天然气工业, 2003,23(1): 95-97. Zheng X,Sun Z G,Fan S S,et al. Experimental Study on Natural Gas Hydrate storage gas[J]. Natural Gas Industry,2003,23(1):95-97. [26] Ganji H, Aalaie J, Boroojerdi S H, et al. Effect of polymer nanocomposites on methane hydrate stability and storage capacity[J]. Journal of Petroleum Science and Engineering, 2013, 112(3): 32-35. [27] Najibi H, Mirzaee Shayegan M, Heidary H. Experimental investigation of methane hydrate formation in the presence of copper oxide nanoparticles and SDS[J]. Journal of Natural Gas Science and Engineering, 2015,23:315-323. |
相关文章 15
[1] | 付超 王秀云 万里强 韩心悦 王琳晓 方建维 黄发荣. 高离子电导率及CO2渗透性聚三唑盐薄膜的制备及性能[J]. 过程工程学报, 2021, 21(1): 100-107. |
[2] | 蔺淑洁 温嘉玮 曹宏斌 宁朋歌 张懿. 电喷雾质谱法示踪钨回收过程离子的转化路径[J]. 过程工程学报, 2019, 19(6): 1135-1142. |
[3] | 蔺淑洁 宁朋歌 张懿. 含氧酸根检测方法的研究现状及质谱法在钨钼分离中的应用前景[J]. 过程工程学报, 2019, 19(5): 910-918. |
[4] | 鲍雨 赵世民 吕国强 王毅博 肖庭 马文会. 电磁分离一次铝硅合金中的富铁相[J]. 过程工程学报, 2019, 19(2): 309-316. |
[5] | 杨玮 曹欢 张凯 王刚. 焙烧酸浸渣中铜的形态对铜、金浸出率的影响[J]. 过程工程学报, 2018, 18(6): 1226-1231. |
[6] | 鲍允州 吴忱韩 张莹. 流经突然扩张的微通道的单气泡界面形态演变的数值模拟[J]. 过程工程学报, 2018, 18(6): 1178-1186. |
[7] | 曹文健 任飞 相龙凯 冯艳 楚化强 顾明言. 富氧气氛下碳氢燃料同轴射流扩散火焰的形态特性[J]. 过程工程学报, 2017, 17(3): 632-639. |
[8] | 王玉琳齐森胡海娟陈芳秋刘光复. 从废ITO玻璃回收铟及制备高品质玻璃[J]. , 2015, 15(1): 94-99. |
[9] | 翟延昭王莹利王光娜朱永霞刘合之张在磊马力强纪永军苏发兵. 由铜精矿制备有机硅单体合成反应三元铜催化剂及其性能[J]. , 2014, 14(6): 1020-1028. |
[10] | 吴王杰洪璐孙小龙付永前. 钙离子对米根霉菌体形态及L-乳酸合成的影响[J]. , 2014, 14(4): 655-659. |
[11] | 张学民李金平吴青柏王春龙南军虎. CO2置换天然气水合物中CH4的研究进展[J]. , 2014, 14(4): 715-720. |
[12] | 高倩刘杰刘立明陈坚. 土曲霉菌体形态对衣康酸生产效率的影响[J]. , 2013, 13(2): 281-286. |
[13] | 禹言芳熊强孟辉波王伟吴剑华. 竖直上升螺旋流内瞬态压力波动信号混沌吸引子形态特性[J]. , 2012, 12(5): 735-741. |
[14] | 魏芬绒张延玲魏文洁杨小刚. 不锈钢粉尘化学组成及其Cr,Ni存在形态[J]. , 2011, 11(5): 786-793. |
[15] | 王峰顾志国印小燕. 螺旋藻水溶性多糖提取液的絮凝过程[J]. , 2011, 11(3): 468-474. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3055