青岛科技大学化工学院,山东 青岛 266042
收稿日期:
2017-09-29修回日期:
2017-11-24出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
田文德基金资助:
基于非线性动态模型的精馏过程安全智能预测方法与预警策略研究Application of Fault Classification Method Based on VAE-DBN in Chemical Process
Xiang ZHANG, Zhe CUI, Yuxi DONG, Wende TIAN*College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, Shandong 266042, China
Received:
2017-09-29Revised:
2017-11-24Online:
2018-06-22Published:
2018-06-06Contact:
TIAN Wen-de 摘要/Abstract
摘要: 针对化工过程高维数据的故障特征难以提取的难题,提出变分自动编码器(VAE)结合深度置信网络(DBN)的混合故障诊断方法. 在VAE的编码部分对隐变量空间Z添加约束,通过重参数化方法进行反向传播训练,可无监督地学习不同故障对应的隐变量特征,其作为DBN分类模型的输入特征训练网络,输入测试集进行故障诊断. 田纳西伊斯曼流程(TE)应用结果表明,VAE能提取原始数据更加抽象有效的特征,VAE?DBN分类准确.
引用本文
张祥 崔哲 董玉玺 田文德. 基于VAE-DBN的故障分类方法在化工过程中的应用[J]. 过程工程学报, 2018, 18(3): 590-594.
Xiang ZHANG Zhe CUI Yuxi DONG Wende TIAN. Application of Fault Classification Method Based on VAE-DBN in Chemical Process[J]. Chin. J. Process Eng., 2018, 18(3): 590-594.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217345
http://www.jproeng.com/CN/Y2018/V18/I3/590
参考文献
[1]Tian W D, Hu M G, Li C K.Fault Prediction Based on Dynamic Model and Grey Time Series Model in Chemical Processes[J].Chinese Journal of Chemical Engineering, 2014, 22(6):643-650 [2]Tian W D, Sun S L, Guo Q J.Fault Detection and Diagnosis for Distillation Column Using Two-tier Model[J].Canadian Journal of Chemical Engineering, 2013, 91(10):1671-1685 [3]毛海涛 田文德 梁慧婷.基于双层机器学习的动态精馏过程故障检测与分离[J].过程工程学报, 2017, 17(2):351-356 [4]J B Tenenbaum, V De Silva, J C Langford.A global geometric framework for nonlinear dimensionality reduction[J].Science, 2000, 290(5500):2319-2323 [5]Roweis S T, Saul.L KNonlinear Dimensionality Reduction by Locally Linear Embedding[J].Science, 2000, 290(5500):2323-2326 [6]M Belkin, P Niyogi.Laplacian Eigenmaps for Dimensionality Reduction and Data Representation[J].Neural computation, 2003, 15(6):1373-1396 [7] V D Silva, J B Tenenbaum.Global Versus Local Methods in Nonlinear Dimensionality Reduction [J].Advances in Neural Information Processing Systems, 2003, 15:1959-1966 [8]Hinton G E.Visualizing High-Dimensional Data Using t-SNE[J].Vigiliae Christianae, 2008, 9(2):2579-2605 [9]Hinton G, Roweis S.Stochastic Neighbor Embedding[J].Advances in Neural Information Processing Systems, 2003, 41(4):833-840 [10] Laurens V D M.Accelerating t-SNE Using Tree-based Algorithms [M]. JMLR.org, 2014. [11] Sun W, Shao S, Zhao R, et al.A Sparse Auto-encoder-based Deep Neural Network Approach for Induction Motor Faults Classification [J].Measurement, 2016, 89:171-178 [12]Lu C, Wang Z Y, Qin W L, et al.Fault Diagnosis of Rotary Machinery Components Using a Stacked Denoising Autoencoder Based Health State Identification[J].Signal Processing, 2017, 130(C):377-388 [13] Shao H, Jiang H, Zhao H, et al.A Novel Deep Autoencoder Feature Learning Method for Rotating Machinery Fault Diagnosis[J].Mechanical Systems & Signal Processing, 2017, 95:187-204 [14] A M. Cheriyadat,.Unsupervised Feature Learning for Aerial Scene Classification 439–451.[J].IEEE Transactions on Geoscience & Remote Sensing, 2014, 52(1):439-451 [15] Kingma D P, Welling M.Auto-Encoding Variational Bayes[C]// Conference proceedings: papers accepted to the International Conference on Learning Representations (ICLR) 2014. arXiv.org, 2014. [16]Hinton G E, Osindero S, Teh Y W.A Fast Learning Algorithm for Deep Belief Nets[J].Neural Computation, 2006, 18(7):1527-1554 [17]Hinton G E, Salakhutdinov R R.Reducing the Dimensionality of Data with Neural Networks[J].Science, 2006, 313(5786):504 [18] Zhang Z, Zhao J S.A Deep Belief Network Based Fault Diagnosis Model for Complex Chemical Processes[J].Computers & Chemical Engineering, 2017 |
相关文章 1
[1] | 衷路生 夏相明. 基于深度残差网络的化工过程故障诊断[J]. 过程工程学报, 2020, 20(12): 1483-1490. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3070