1. 新疆大学化学化工学院,石油天然气精细化工教育部重点实验室,新疆 乌鲁木齐 830046;2. 中国科学院过程工程研究所多相复杂系统国家重点实验室,北京 100190
收稿日期:
2017-09-04修回日期:
2017-11-10出版日期:
2018-06-22发布日期:
2018-06-06通讯作者:
崔彦斌基金资助:
中国科学院过程工程研究所介尺度科学中心创新基金Thermal Conductivity of Carbon Nanotubes-Expanded Graphite/Epoxy Resin Composite
Yanjie LIU1,2, Jiangyin LU1*, Ling LI1, Xiaofeng WU2, Yanbin CUI2*1. Key Laboratory of Oil & Gas Fine Chemicals, Ministry of Education, College of Chemistry and Chemical Engineering, Xinjiang University, Urumqi, Xinjiang 830046, China;2. State Key Lab of Multi-phase Complex System, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2017-09-04Revised:
2017-11-10Online:
2018-06-22Published:
2018-06-06摘要/Abstract
摘要: 在环氧树脂中添加多壁碳纳米管和膨胀石墨作为填料,以提高环氧树脂的导热性能. 结果表明,添加0.5wt%多壁碳纳米管时,环氧树脂的最佳导热系数为0.3448 W/(m?K),比不添加时提高30%;添加0.75wt%羧基改性多壁碳纳米管时,环氧树脂的最佳导热系数为0.3813 W/(m?K),比添不加时提高40%;同时添加多壁碳纳米管和膨胀石墨后,环氧树脂导热系数可进一步提高到0.4039 W/(m?K),表明在环氧树脂中添加混合填料,二者可在环氧树脂中形成有效的导热网络,能进一步提高聚合物的导热性能.
引用本文
刘艳杰 陆江银 李玲 武晓峰 崔彦斌. 碳纳米管-膨胀石墨/环氧树脂复合材料的导热性能[J]. 过程工程学报, 2018, 18(3): 563-569.
Yanjie LIU Jiangyin LU Ling LI Xiaofeng WU Yanbin CUI. Thermal Conductivity of Carbon Nanotubes-Expanded Graphite/Epoxy Resin Composite[J]. Chin. J. Process Eng., 2018, 18(3): 563-569.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217325
http://www.jproeng.com/CN/Y2018/V18/I3/563
参考文献
[1]Zhi D H, Alberto F.Thermal conductivity of carbon nanotubes and their polymer nanocomposites: a review[J].Progress in Poiymer Science, 2011, 36(7):914-944 [2]Moore A L.Emerging challenges and materials for thermal management of electronics[J].Materials Today, 2014, 17(4):163-174 [3]Tong X C.Advanced materials for thermal management of electronic packaging[J].Springer Science and Business Media, 1998, 50(6):47-51 [4]Xie B H, Huang X, Zhang G J.High thermal conductive polyvinyl alcohol composites with hexagonal boron nitride microplatelets as fillers[J].Composites Science Technology, 2013, 85:98-103, 2013, 85:98-103 [5] Liem H, Choy H S.Superior thermal conductivity of polymer nanocomposites by using graphene and boron nitride as fillers[J].Solid State Communications, 2013, 163:41-45 [6]Zhou T, Wang X, Cheng P, et al.Improving the thermal conductivity of epoxy resin by the addition of a mixture of graphite nanoplatelets and silicon carbide microparticles[J].Express Polymer Letters, 2013, 7(7):585-594 [7]Kim P, Shil, Majumdr A, et al.Thermal transport measurements of individual multiwalled nanotubes[J].Physical Review Letters, 2001, 87(21):215-502 [8]Biercuk M J, Laguno M C, Radosavljevic M, et al.Carbon nanotube composites for thermal management[J].Applied Physics Letters, 2002, 80(15):2767-2769 [9]Kim P, ?Shi L, ?Majumdar A, ?McEuen P L, et al.Thermal transport measurements of individual multiwalled nanotubes[J].Condensed Matter, 2001, 87(21):5502-5502 [10]Thostenson Erik T, Li C Y, Chou Tsu-Wei.Nanocomposites in context[J].Composites Science and Technology, 2005, 65(3):491-516 [11]Cho E C, ?Chang-Jian C W, Hsiao Y S, Lee K C, ?Huang J H.Three-dimensional carbon nanotube based polymer composites for thermal management[J].Applied Science and Manufacturing, 2016, 90(90):678-686 [12]Kim K, Kim J.Core-shell structured BN/PPS composite film for high thermal conductivity with low filler concentration[J].Composites Science and Technology, 2016, 134:209-216, 2016, 134:209-216 [13]Stroscio Michael A, Dutta Mitra, Kahn Daniel, et al.Continuum model of optical phonons in a nanotube[J].Superlattices Microstruct, 2001, 29(6):405-409 [14]Cui X, Ding P, Zhang N, et al.Thermal conductive and mechanical properties of polymeric composites based on solution-exfoliated boron nitride and graphene nanosheets: a morphology-promoted synergistic effect[J].ACS Appllied Materials and Interfaces, 2015, 7(34):19068-19075 [15]Im H, Kim J.Thermal conductivity of a graphene oxide–carbon nanotube hybridepoxy composite[J].Carbon, 2012, 50(15):5429-5240 [16]Ng H Y, Lu X H, Lau S K.Thermal conductivity,electrical resistivity,mechanical,and rheological properties of thermoplastic composites filled with boron nitride and carbon fiber[J].Polymer?Composites, 2005, 26(1):66-73 [17]Ma A, Chen W, Hou Y.Enhanced thermal conductivity of epoxy composites with MWCNTsAlN hybrid filler[J].Polymer-plastics Technology and Engineering, 2012, 51(15):1578-1582 [18]YU A, RAMESH P, SUN X, et al.Enhanced thermal conductivity in a hybrid graphite nanoplatelet-carbon nanotube filler for epoxy composites[J].Advced Materials, 2008, 20(24):4740-4744 [19]Xiao Y, Wang W, Lin T, et al.Largely enhanced thermal conductivity and high dielectric constant of poly (vinylidene fluoride)boron nitride composites achieved by adding a few carbon nanotubes[J].Journal of materials?chemistry, 2016, 120(12):6344-655 [20]陈志刚, 张勇, 杨娟, 邱滔.膨胀石墨的制备、结构和应用[J].江苏大学学报, 2005, 26(3):248-252 [21]Chen Z G, Zhang Y, Yang J, Qiu T.Preparations structures and applications of exfoliated graphite[J].Journal of Jiangsu University, 2005, 26(3):248-252 [22]宋小杰, 徐静, 魏先文.碳纳米管的化学修饰研究进展[J].合成化学, 2006, 14(2):107-112 [23]Song X J, Xu J, Wei X W.Advances in chemical modification of carbon nanotubes[J].Chinese Journal of Synthetic Chemistry, 2006, 14(2):107-112 [24]刘俊峰, 袁华, 杜波, 曹敬煜, 黄德欢.碳纳米管导热硅脂复合材料的导热性能[J].材料科学与工程报, 2009, 27(2):312-313 [25]Liu J F, Yuan H, Du B, Cao J Y, Huang D H.Thermal conductivity of the carbon nanotubesilicone grease composite[J].Journal of Materials Science and Engineering, 2009, 27(2):312-313 [26]陈金玉.碳纳米管/环氧树脂纳米复合材料的制备及力、热性能影响机理 [D]. 哈尔滨: 哈尔滨理工大学, 2014: 39-40. [27]Chen J Y.Study on preparations and relevant mechanism of mechanical/thermal properties of MWCNTs/EP nanocomposites [D]. Harbin: Harbin University of Science and Technology, 2014: 39-40. [28]戴永乐.碳纳米管复合材料的制备及导热性能的研究 [D]. 浙江: 浙江大学, 2013: 39 -41. [29]Dai Y L.Study on preparation and thermal properties of carbon nanotubes composites [D]. Zhejiang: Zhejiang University, 2013: 39-41. [30]闫喜春.氧化石墨烯/碳纳米管环氧树脂复合材料制备及性能研究 [D]. 长春: 长春工业大学, 2014: 18-20. [31]Yan X C.Study on preparation and properties of the composite with graphene oxide-carbon nanotube/epoxy resin [D]. Changchun: Changchun University of Technology, 2014: 18-20. [32]林明.多壁碳纳米管的功能化及其与环氧树脂复合研究 [D]. 湖南: 湖南大学, 2007: 20-22. [33]Lin M.The research of functionalization and epoxy composite of multi-walled carbon nanotubes [D]. Hunan: Hunan university, 2007: 20-22. [34]Lau K T, Hui D.Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures[J].Carbon, 2002, 40(9):1605-1606 [35]Qin Y, Liu L, Shi J, et al.Large-scale preparation of solubilized carbon nanotubes[J].Chemistry of Materials, 2003, 15(17):3256-3260 [36]Dang Z M, Zhou T, Yao S H, et al.Advanced calcium copper titanatepolyimide functional hybrid films with high dielectric permittivity[J].Advanced Materials, 2009, 21(20):2077-2082 [37]Dang Z M, Xia B, Yao S H, et al.High dielectric permittivity high elasticity three component nanocomposites with low percolation threshold and low dielectric loss[J].Applied Physics Letters, 2009, 94(4):93-95 [38]戴永乐.碳纳米管复合材料的制备及导热性能的研究 [D]. 浙江: 浙江大学, 2013: 55-56. [39]Dai Y L.Study on Preparation and Thermal Properties of Carbon Nanotubes Composites [D]. Zhejiang: Zhejiang University, 2013: 55-56. |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 吕孝福 许德华 张志业 王辛龙 杨林. 磷酸二氢铵-磷酸氢二铵-聚磷酸铵-水四元体系相平衡的实验与计算[J]. 过程工程学报, 2021, 21(1): 64-70. |
[3] | 黄新杰 王纯洁 高金达 陈成 唐刚 王昌龙. 阻燃硬质聚氨酯泡沫塑料垂直火蔓延特性研究[J]. 过程工程学报, 2020, 20(7): 843-851. |
[4] | 汪冬冬 刘朋杰 楚化强 王金新 卢厚杨. 基于泡沫金属的复合毛细芯的物性测试[J]. 过程工程学报, 2020, 20(7): 852-859. |
[5] | 王晨 毛会玲 程琥 杜嬛 连小兵 庄金亮. 有机单体空间构型对共轭微孔聚合物催化性能的影响[J]. 过程工程学报, 2020, 20(5): 576-582. |
[6] | 张浩 徐远迪 张磊 刘秀玉. 钢渣改性活性炭的制备及其降解甲醛性能[J]. 过程工程学报, 2019, 19(6): 1228-1233. |
[7] | 罗文梅 万里强 朱帅帅 付超 韩心悦 黄发荣. 基于含硅多芳炔化合物制备新型聚三唑树脂[J]. 过程工程学报, 2019, 19(5): 1022-1029. |
[8] | 鲁进利 李洋 韩亚芳 钱付平. 丙烯酸树脂-正十二烷醇相变微胶囊制备及性能表征[J]. 过程工程学报, 2019, 19(3): 617-622. |
[9] | 唐刚 姜浩浩 陈丽娟 张浩 刘纯林 周子健. 玻纤增强聚酰胺6/次磷酸钇复合材料的制备及其阻燃性能[J]. 过程工程学报, 2018, 18(6): 1340-1346. |
[10] | 张浩 高青 刘秀玉 刘影. 基于BP神经网络优化制备化学改性脱硫灰/丁苯橡胶复合材料[J]. 过程工程学报, 2018, 18(5): 1088-1092. |
[11] | 王赶强 王景甫 张新欣 张涛. 金属基有机硅树脂涂层复合材料的导热性能[J]. 过程工程学报, 2018, 18(4): 785-791. |
[12] | 李艳萍 闫东伟 周少雄. 锰钴复合氧化物MnCo2O4磁性纳米晶的制备及表征[J]. 过程工程学报, 2017, 17(6): 1287-1290. |
[13] | 和森 罗钧耀 郑森 黄静 周新涛 夏举佩 罗中秋. 磷渣基地聚合物胶凝材料固化微细粒铁尾矿[J]. 过程工程学报, 2017, 17(4): 785-790. |
[14] | 王哲 王景甫 郭莲莲. 烧结矿等效导热系数实验测量及分析[J]. 过程工程学报, 2017, 17(4): 879-882. |
[15] | 张浩 宗志芳 刘秀玉 唐刚. 纳米级癸酸-棕榈酸/SiO2相变储湿复合材料的团聚原因及分散方法[J]. 过程工程学报, 2017, 17(3): 584-587. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3066