1. 安徽理工大学机械工程学院,安徽淮南 232001
2. 达姆施塔特工业大学材料科学学院,德国达姆施塔特 D-64287
收稿日期:
2018-01-03修回日期:
2018-03-26出版日期:
2018-08-22发布日期:
2018-08-15通讯作者:
陈清华基金资助:
中国博士后科学基金资助项目;安徽省高校优秀青年人才支持计划重点资助项目;安徽省自然科学基金资助项目Measurement method and application of thermophysical properties of solid materials based on enantiomorphous heat-source principle
Qinghua CHEN1*, Guoyong SU1, Yangbin MA2, Kuosheng JIANG11. School of Mechanical Engineering, Anhui University of Science and Technology, Huainan, Anhui 232001, China
2. School of Materials Science, Technische Universität Darmstadt, Darmstadt, Germany D-64287
Received:
2018-01-03Revised:
2018-03-26Online:
2018-08-22Published:
2018-08-15摘要/Abstract
摘要: 基于平行热线法结合镜像热源原理,提出了一种新的固体材料热物性参数测算模型,在热线法测试原理的基础上,以试样绝热边界为界线,设与真实热源对称位置处存在虚拟镜像热源,以此消除绝热边界造成的热积聚效应影响,测试时可不需再限制实验时间和试样厚度. 当相邻时刻材料的热物性参数计算结果大于判别准则时,引入镜像热源对计算温度进行修正. 为防止修正过程所用热物性参数对实验初期计算值的依赖,模型对实测温度进行两次修正. 以石棉板为研究对象,理论分析结合计算结果表明,两次修正结果不同,但差异不大,且第二次修正后各组热物性参数计算结果更稳定. 对石棉板、大理石、硼硅玻璃、硅砖等4种材料的薄板和厚板进行了热物性测定,结果与文献值较吻合,最大误差均小于5%,验证了本测定方法适用于薄板和厚板试样,有效提升了热线法测定精度,扩大了应用范围.
引用本文
陈清华 苏国用 马杨斌 姜阔胜. 基于镜像热源原理测定固体材料热物性的方法及应用[J]. 过程工程学报, 2018, 18(4): 735-742.
Qinghua CHEN Guoyong SU Yangbin MA Kuosheng JIANG. Measurement method and application of thermophysical properties of solid materials based on enantiomorphous heat-source principle[J]. Chin. J. Process Eng., 2018, 18(4): 735-742.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218109
http://www.jproeng.com/CN/Y2018/V18/I4/735
参考文献
[1] Syamsul H, Mamoru N, Agung T W, et al. Contact measurement of thermal conductivity and thermal diffusivity of solid materials: Experimental validation of feasibility with a prototype sensor [J]. International Journal of Heat and Mass Transfer, 2014, 69(2): 256-263. [2] César S M, Carlos T, Daniela E, et al. Thermal diffusivity measurements of spherical samples using active infrared thermo-graphy[J]. Infraed Physics & Technology, 2012, 62(7): 469-474. [3] Mohammad M R, K.Rukmani, Rajam S, et al. Thermal diffusivity measurements on ternary Ge-Te-TI glasses using photo-thermal detection method: effect of thallium addition [J], Journal of Non-Crystalline Solids, 2012, 358(l): 1501-1505. [4] Zhang H, LI M J, Fang W Z, et al. A numerical study on the theoretical accuracy of film thermal conductivity using transient plane source method[D]. Applied Thermal Engineering, 2014: 62-69. [5] Flueckiger, Scott, Zheng Y. Transient plane source method for thermal property measurements of metal hydrides[D]. Proceedings of the ASME Summer Heat Transfer Conference, 2009: 9-12. [6] Zhang Hu, Li Yueming, Tao W Q. Theoretical accuracy of anisotropic thermal conductivity determined by transient plane source method[D]. International Journal of Heat and Mass Transfer, 2017: 1634-1644. [7] Grace T C, Salvador C N, Francisco V. Rigid foam polyurethane(PU) derived from castor oil (Ricinus communis) for thermal insulation in roof systems[J]. Frontiers of Architectural Research, 2012, 4 (1): 348-356. [8] Krichler M, Odernbach S. Thermal conductivity measurements on ferrofluids with special reference to measuring arrangement[J]. Journal of Magnetism and Magnetic Materials,2013, 326 (1): 85-90. [9] LI Yanning, SHI Chunfeng, LIU Jian, et al. Improving the accuracy of the transient plane source method by correcting probe heat capacity and resistance influences[D]. Measurement Science and Technology, 2014(1): 15006-15012. [10] 中华人民共和国质量监督检验检疫总局. GB/T 5009—2006, 耐火材料热导率试验方法(热线法)[S]. 北京: 中国标准出版社, 2006. General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China GB / T 5009-2006, Test method for thermal conductivity of refractory materials (hotline method) [S]. Beijing: China Standard Press, 2006. [11] 国家质量技术监督局. GB/T 10297—1998,非金属固体材料热导率的测定: 热线法[S]. 北京:中国标准出版社,1998. National Quality and Technical Supervision. GB / T 10297-1998, Non-metallic solid material thermal conductivity determination: hot wire method [S]. Beijing: China Standard Press, 1998. [12] 陈清华, 程刚, 庞立,等. 固体材料热物性参数智能测试系统设计与研制[J]. 宇航材料工艺,2016, 46(02): 57-62. CHEN Qinghua, CHENG Gang, Pang Li, et al. Design and development of intelligent test system for thermal material parameters of solid materials [J]. Aerospace Materials Technology, 2016,46(02): 57-62. [13] 候镇冰. 固体热传导[M]. 上海: 上海科学技术出版社,1984: 95-97. HOU Zhenbing. Solid heat conduction [M]. Shanghai: Shanghai Science and Technology Press, 1984: 95-97. [14] 朱法银, 梁碧芝. 井函数及其级数展开[J]. 大庆石油学院学报,1994, 18(1): 114-116. ZHU Fayin, LIANG Bizhi. Well function and its series expansion [J]. Journal of Daqing Petroleum Institute, 1994,18(1): 114-116. [15] 王欣, 赵美英, 顾亦磊,等. 热源温度场叠加法在薄壁结构热分析中的应用[J]. 中国空间科学技术, 2007, (03): 64-67. WANG Xin, ZHAO Meiying, GU Yilei, et al. Application of heat source temperature field superposition method in thin-wall structure thermal analysis [J]. China Space Science and Technology, 2007,(03): 64-67. [16] 周孑民, 朱再兴, 谢东江,等. 常功率平面热源法测试耐火材料热物性的研究[J]. 中南大学学报(自然科学版),2011, 42(5): 1467-1472. ZHOU Jiemin, ZHU Zaixing, XIE Dongjiang, et al. Study on the thermal properties of refractory materials by constant power planar heat source method [J]. Journal of Central South University (Natural Science Edition), 2011,42(5): 1467-1472. |
相关文章 0
No related articles found! |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3082