删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

玉米芯炭质燃料的理化性能及热解过程分析

本站小编 Free考研考试/2022-01-01

杨兴卫1, 杨茂立1, 安 海1, 陈海生1,2*, 张少朋1, 梁志松1
1. 国家能源大规模物理储能技术(毕节)研发中心,贵州毕节 551700
2. 中国科学院工程热物理研究所,北京 100190
收稿日期:2017-10-20修回日期:2017-12-30出版日期:2018-08-22发布日期:2018-08-15
通讯作者:杨兴卫

基金资助:基于毕节地区生物质热解制备炭质燃料的新技术研究;贵州省大规模物理储能工程技术研究中心项目

Analysis on pyrolysis process and physicochemical properties of char fuels deprived from corn cobs

Xingwei YANG1, Maoli YANG1, Hai AN1, Haisheng CHEN1,2*, Shaopeng ZHANG1, Zhisong LIANG1
1. National Energy Large Scale Physical Energy Storage Technologies Research & Development Center (Bijie), Bijie, Guizhou 551700,
China
2. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing 100190, China
Received:2017-10-20Revised:2017-12-30Online:2018-08-22Published:2018-08-15
Contact:Yang haixingwei






摘要/Abstract


摘要: 研究了农业生物质废弃物玉米芯热解产物炭质燃料的理化性能与裂解温度的关系及热解机理,用FT-IR, XRD, SEM对玉米芯炭进行表征,分析了化学组成、官能团分布、芳构化程度与温度的关系. 结果表明,随热解温度升高,热解所得焦炭中固定碳和灰分增加,挥发分和水分减小,产率下降,热值先增加后减少,羰基和脂肪族官能团逐渐被破坏,结晶度和芳构化程度不断增强. 500℃时,焦炭热值大于32 MJ/kg, 产率大于24%, 固定碳大于80%, 灰分小于4%,且具有发达的孔洞结构,各项指标接近或优于市售燃料炭;233~533℃下玉米芯挥发最剧烈,具有1.5级反应的特征;热解温度从233~353℃上升至353~533℃时,表观活化能从68.15 kJ/mol降至37.25 kJ/mol.

引用本文



杨兴卫 杨茂立 安海 杨兴卫 张少朋 梁志松. 玉米芯炭质燃料的理化性能及热解过程分析[J]. 过程工程学报, 2018, 18(4): 851-857.
Xingwei YANG Maoli YANG Hai AN Haisheng CHEN Shaopeng ZHANG Zhisong LIANG. Analysis on pyrolysis process and physicochemical properties of char fuels deprived from corn cobs[J]. Chin. J. Process Eng., 2018, 18(4): 851-857.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217376
http://www.jproeng.com/CN/Y2018/V18/I4/851







[1] 曹阳, 杨婕, 熊伟, 等. 1961-2010 年潜在干旱对我国夏玉米产量影响的模拟分析[J].生态学报, 2014, 34(2): 421-429.
CAO Yang, YANG Jie, XIONG Wei, WU Yongfeng, FENG Lingzhi, YANG Xiaoguang. Simulation of summer maize yield influenced by potential drought in China during 1961-2010 [J]. ACTA Ecologica Sinica, 2014, 34(2):421-429.
[2] 姚锡文,许开立. 玉米芯的热解特性及气相产物的释放规律[J]. 农业工程学报, 2015, 31(3):275-282.
Yao Xiwen, Xu Kaili. Pyrolysis characteristics of corn cob and release rule of gas products[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(3):275-282.
[3] Saxena R C, Adhikari D K, Goyal H B. Biomass-based energy fuel through biochemical routes: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 167-178.
[4] 曾凯斌,蒋斌波,陈纪忠. 竹材热解过程的动力学[J]. 化工学报,2006, 57(2): 318-323.
Zeng Kaibin, Jiang Binbo, Chen Jizhong. Kinetics of bamboo pyrolysis [J]. Journal of Chemistry Industry and Engineering (China), 2006, 57(2): 318-323.
[5] 胡松,向军,孙路石,付鹏,杨涛,苏胜,陈巧巧. 谷壳热解过程中颗粒孔隙结构分形特性[J]. 化工学报, 2008,59(9):2322-2327.
Hu Song, Xiang Jun, Sun Lushi, et al. Fractal characteristics of rice husk/char particles prepared by pyrolysis process[J]. Journal of Chemistry Industry and Enginering (China),2008,59(9): 2322-2327.
[6] 程辉, 余剑,姚梅琴,许文光. 木质素慢速热解机理[J]. 化工学报, 2013,64(5):1757-1764.
CHENG Hui, YU Jian, YAO Meiqin, XU Guangwen. Mechanism analysis of ligin slow pyrolysis[J]. Journal of Chemistry Industry and Enginering (China), 2013,64(5):1757-1764.
[7] 李水清, 李爱民, 严建华, 等. 生物质废弃物在回转窑内热解研究-Ⅰ热解条件对热解产物分布的影响[J]. 太阳能学报, 2000, 21(4): 333-340.
LiShulqing, Li Aimin, Yan Jianhua, Ren Yuan, et al. Pyrolysis of the Biomass Wastes In A Rotary Kiln: Influence of Reaction Condition On Pyrolysis Product Distribution[J]. ACTA ENERGIAE SOLARIS SINICA, 2000, 21(4): 333-340.
[8] 彭锦星, 陈冠益, 王德芹, 等. 木质材料热解动力学及典型气体产物分析[J].太阳能学报, 2011, 32(12): 1719-1724.
Peng Jinxing, Chen Guanyi, Wang Deqin, et al. Kinetic and gaseous product analysis of wood pyrolysis[J]. ACTA ENERGIAE SOLARIS SINICA, 2011, 32(12) : 1719-1724.
[9] 赖艳华, 吕明新, 马春元, 等. 生物质多孔燃料层辐射加热热解过程的影响因素分析[J].太阳能学报, 2011, 32(5): 735-740.
Lai Yanhua, Lv Mingxin, Ma Chunyuan, Shi Mingheng, et al. Analysis of influence factors on the pyrolysis process of the biomass fuel porous bed under radiant heating[J]. ACTA ENERGIAE SOLARIS SINICA, 2011, 32(5): 735-740.
[10] 赵丽霞, 陈冠益, 陈占秀, 等. 生物质玉米芯热解动力学实验研究[J]. 太阳能学报, 2011, 32(32): 598-603.
Zhao Lixia, Chen Guanyi, Chen Zhanxiu, et al. Experimental study on corn cob pyrolysi and kinetic analysis[J]. ACTA ENERGIAE SOLARIS SINICA, , 2011, 32(32): 598-603.
[11] Li Shuiqing, Li Aiming, Yan Jianhua, et al. Pyrolysis of the biomass wastes pyrolysis in a rotary kiln I: Influences of reaction conditions on pyrolysis product distribution[J]. Acta Energiae Solaris Sinica, 2000, 21(4): 333-340.
[12] Jing Li, Jianjun Dai, Guangqing Liu, Hedong Zhang, et al. Biochar from microwave pyrolysis of biomass: A review [J]. Biomass and Bioenergy , 2016, 94(3):228-244.
[13] Zhang X D, XuM, Sun RF, et al. Study on biomass pyrolysis kinetics[J].Journal of Engineering for Turbines and Power, 2006, 128(3): 493-496.
[14] Cao Q, Xie KC, BaoW R, et al. Pyrolytic behavior of waste corncob [J]. Bioresource Technology, 2004, 94(1):83-89.
[15] Ates F, Isikdag M A. Influence of temperature and alumina catalyst on pyrolysis of corncob [J].Fuel, 2009, 88(10): 1991-1997.
[16] 程伟凤, 李慧, 杨艳琴, 等. 城市污泥厌氧发酵残渣热解制备生物炭及其氮磷吸附研究[J].化工学报, 2016, 67 (4): 1541-1548.
CHENG W F, LI H, YANG Y Q, et al. Preparation of biochar with fermented sludge residue by pyrolysis and adsorption of nitrogen and phosphorus [J]. CIESC Journal, 2016, 67 (4): 1541-1548.
[17] 熊绍武,张守玉,吴巧美,郭 熙,董爱霞,陈 川. 生物质制备燃料炭实验研究[J]. 太阳能学报, 2015, 36(05): 1041-1047.
Xiong Shaowu, Zhang Shouyu, Wu Qiaomei, Guo Xi, Dong Aixia, Chen Chuan. Study on biomass carbonization for fuel charcoal preparation[J]. ACTA ENERGIAE SOLARIS SINICA, 2015, 36(05): 1041-1047.
[18] 朱金陵, 何晓峰, 王志伟, 李再峰, 雷廷宙.玉米秸秆颗粒热解制炭的试验研究[J].太阳能学报, 2010, 7 (31): 0789-05.
Zhu Jinling, He Xiaofeng, Wang Zhiwei, Li Zaifeng, Lei Tingzhou. Experimental study on pyrolysising and producing charcoal with corn straw pellet[J]. ACTA ENERGIAE SOLARIS SINICA, 2010, 7 (31): 0789-05.
[19] Georgakopoulos A, Iordanidis A, Kapina V. Study of low rank Greek coals using FTIR spectroscopy [J]. Energy Source, 2003, 25(1):995-1005.
[20] Cˇerny′ J. Structural dependence of CH bond absorptivities and consequences for FT-IR analysis of coals [J]. Fuel, 1996, 75(9): 1301-1306.
[21] Zhang Wenbiao, Hua Yukun, Ye Liangming.A study on mechanism of electric conduction of bamboo charcoal [J]. Journal of Nanjing Forestry University, 2002, 26(4):47-50.
[22] Fu Peng, Hu Song, Xiang Jun. Kinetic study on pyrolysis and gasification of rice lmsk by using TG-FF. IR analysis [J]. Acta Energiae Solar Sinica, 2008, 29 (11): 1366-1405.
[23] Uwata K, Saito Y, Shida S. Intercalation of wood charcoal with sulfuric acid [J]. Wood Sci, 2009, 55 (2):154-1.
[24] Lu L, Kong C, Sahajwalla V, Harris D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity [J]. Fuel, 2002, 81(2): 1215-1225.
[25] Ravindra R, Irshad M, Renu D. Study of structural evolution of chars during rapid pyrolysis of waste CDs at different temperatures[J]. Fuel, 2014, 134(4): 17-25.
[26] Fu P, Hu S, Xiang J, Sun L, Li P, Zhang J.Pyrolysis of maize stalk on the characterization of chars formed under different devolatilization conditions [J]. Energy Fuels, 2009, 23(6): 4605–4611.
[27]廖艳芬, 曾成才, 马晓茜, 宋景慧. 中国南方典型生物质热解及燃烧特性热重分析[J]. 华南理工大学学报(自然科学版), 2013, 41(08): 0001-0008.
Liao Yanfen, Zeng Chengcai, Ma Xiaoqian, Song Jinghui. Thermogravimetric Analysis of Pyrolysis and Combustion Characteristics of Typical Biomass in South China[J]. Journal of South China University of Technology(Natural Sciecne Edition) , 2013, 41(08): 0001-0008.
[28]杜艳芳, 卢珊, 张晓萌. 生物质壳类物热解动力学研究[J]. 应用化工, 2013, 42(8): 1394-1397.
DU Yanfang, LU Shan, Zhang Xiaomeng. Research of pyrolysis and its kinetics on biomass shell type[J]. Applied Chemical Industry, 2013, 42(8): 1394-1397.
[29] 蒋剑春,沈兆邦. 生物质热解动力学的研究[J].林产化学与工业, 2003, 23(4):0001-0006.
JIANG Jian-chun, SHEN Zhao-bang. Study on reaction kinetics of biomass pyrolysios [J]. Chemistry and Industry of Forest Products, 2003, 23(4):0001-0006.
[30] Coats A W, Redfem J P. Kinetic parameter from thermogravimetric data [J]. Nature, 1964, 201(1):68-69.




[1]郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439.
[2]张梦秋 靳惠娟 巩方玲 张佑红 韦祎 何玉先 马光辉. 两亲性脂肽纳米混悬液冻干粉的制备及其表征[J]. 过程工程学报, 2021, 21(4): 463-470.
[3]孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264.
[4]马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229.
[5]陈建军 张军伟 宋乾宁. 离子交换分离L-缬氨酸的传质动力学及动态穿透特征[J]. 过程工程学报, 2021, 21(1): 46-56.
[6]夏紫薇 郑刘根 周春财 魏祥平 董祥林. 安徽临涣矿区烟煤与生活污泥共燃的燃烧特性与动力学特征[J]. 过程工程学报, 2021, 21(1): 108-115.
[7]刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821.
[8]吴浩 邹冲 何江永 王凯 刘占伟 师帅. 低阶煤热解条件对高炉喷吹半焦燃烧性能及动力学特性的影响[J]. 过程工程学报, 2020, 20(4): 449-457.
[9]薛岗 丁磊 高阳 钟梅英. 表面印迹耦合溶胶-凝胶法制备4-硝基酚印迹材料及性能表征[J]. 过程工程学报, 2020, 20(4): 440-448.
[10]李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275.
[11]叶聪 邢献军 张学飞 陈涛 张佳佳. 城市污泥与稻壳水热炭混合燃烧特性与动力学[J]. 过程工程学报, 2020, 20(3): 362-370.
[12]龚傲 吴选高 喻小强 王定纯 徐志峰 田磊. 选择性还原氨浸从高硅低品位铜钴矿中提取铜、钴 的工艺及其浸出动力学[J]. 过程工程学报, 2020, 20(10): 1156-1165.
[13]龙超 陈瑞 翟持 陈飞 杨春曦. 微芯片中磁性液滴的生成与操控综述[J]. 过程工程学报, 2020, 20(10): 1134-1146.
[14]徐霞 吴云 赵勇 李宏强 彭敏 徐建. 微波烘焙预处理降解玉米秸秆[J]. 过程工程学报, 2019, 19(S1): 109-114.
[15]张祎 宋强 舒新前. 生物质还原-磁选不锈钢酸洗污泥[J]. 过程工程学报, 2019, 19(6): 1111-1119.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3109
相关话题/过程 工程 生物 化工 结构