1. 龙岩学院化学与材料学院,福建 龙岩 364012 2. 龙岩学院福建省清洁能源材料重点实验室,福建 龙岩 364012
收稿日期:
2018-02-01修回日期:
2018-03-23出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
谢桂香基金资助:
MOFs掺杂纳米二氧化钛的制备及其光催化性能;金属氧化物微纳米结构在水污染处理中的应用研究;手性多孔联苯型金属-有机骨架材料的不对称合成与性能研究Preparation and photocatalytic properties of ZnO/C/TiO2 nanoparticles
Guixiang XIE1, Jijian WEI1, Zhibiao HU1,2*, Ruijuan ZHENG1,21. College of Chemistry and Material Science, Longyan University, Longyan, Fujian 364012, China
2. Fujian Provincial Key Laboratory of Clean Energy Materials, Longyan University, Longyan, Fujian 364012, China
Received:
2018-02-01Revised:
2018-03-23Online:
2018-10-22Published:
2018-10-12摘要/Abstract
摘要: 以金属有机骨架MOF-5为前驱体,在氮气气氛下高温处理得ZnO/C,通过水热法将ZnO/C负载到TiO2中获得ZnO/C/TiO2纳米复合光催化剂,对其晶体结构、形貌特征、成分等进行了表征,采用正交实验法考察了MOF-5处理温度、ZnO/C负载量、钛酸丁酯加入量对复合光催化剂催化降解甲基橙性能的影响. 结果表明,TiO2的比表面积为87.5 m2/g, ZnO/C/TiO2的比表面积为109.0 m2/g. 制备ZnO/C/TiO2的最佳条件为MOF-5处理温度600℃,ZnO/C负载量0.07 g,钛酸丁酯加入量1.5 mL. 甲基橙用紫外灯照射90 min,以TiO2为催化剂时降解率为62.1%,以ZnO/C/TiO2为催化剂时降解率达99.5%,光催化活性大大提高.
引用本文
谢桂香 魏基坚 胡志彪 郑瑞娟. ZnO/C/TiO2复合纳米材料制备及其光催化性能[J]. 过程工程学报, 2018, 18(5): 1068-1074.
Guixiang XIE Jijian WEI Zhibiao HU Ruijuan ZHENG. Preparation and photocatalytic properties of ZnO/C/TiO2 nanoparticles[J]. Chin. J. Process Eng., 2018, 18(5): 1068-1074.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218127
http://www.jproeng.com/CN/Y2018/V18/I5/1068
参考文献
[1] 戴树桂. 环境化学[M]. 北京:高等教育出版社, 2006, 214-232. Dai S G. .《Environmental Chemistry》[M]. Beijing: Higher Education Press, 2006, 214-232. [2] Budarz J F, Turolla A , Piasecki A F , et al. Influence of Aqueous Inorganic Anions on the Reactivity of Nanoparticles in TiO2 Photocatalysis[J]. Langmuir, 2017, 33 (11):2770-2779. [3] Lee K M, Lai C W, Nga K S, et al. Recent Developments of Zinc Oxide Based Photocatalyst in Water Treatment Technology: A Review[J]. Water Res., 2016, 88(1): 428-448. [4] Tomita O, Otsubo T, Higashi M , et al. Partial Oxidation of Alcohols on Visible-light-responsive WO3 Photocatalysts Loaded with Palladium Oxide Cocatalyst[J]. ACS Catal., 2016, 6 (2), 1134-1144 [5] Zhang L , Yu W , Han C , et al. Large Scaled Synthesis of Heterostructured Electrospun TiO2/SnO2 Nanofibers with an Enhanced Photocatalytic Activity[J]. J. Electrochem. Soc.2017 , 164(9):651-656. [6] Han S C, Hu L F, Liang Z Q, et al. One-step Hydrothermal Synthesis of 2D Hexagonal Nanoplates of α-Fe2O3/graphene Composites with Enhanced Photocatalytic Activity[J]. Adv. Func. Mater., 2014, 24(36): 5719-5727. [7] Lu Y , Zhao Y , Zhao J Z, et al. Induced Aqueous Synthesis of Metastable β-Bi2O3 Microcrystals for Visible-light Photocatalyst Study[J]. Cryst. Growth Des., 2015, 15 (3):1031-1042. [8] Sakthivel S, VShankar M , Palanichamy, et al. Enhancement of Photocatalytic Activity by Metal Deposition Characterization and Photonic Efficiency of Pt Au and Pd Deposited on TiO2 Catalysis[J]. Water Res., 2004, 38:3001-3008. [9] 刘雪峰, 张利, 涂铭旌. 纳米Ce/TiO2无机抗菌剂的制备及其性能评价[J] .过程工程学报, 2004, 4(3):256-260. Liu X F, Zhang L, Tu M S. Preparation of Nano-Ce/TiO2 Inorganic Antibacterial Agent and Evaluation of Its Antibacterial Activities[J]. Chin. J. Process Eng., 2004, 4(3):256-260. [10] 杨访, 宣绍峰, 马新胜. 纳米光催化网 ACH/TiO2 动态降解甲苯气体[J]. 过程工程学报, 2015, 15(1):164-168. Yang F, Xuan S F, Ma X S. Dynamic Photocatalytic Degradation of Toluene Gas in ACH/TiO2 Photocatalytic Network[J]. Chin. J. Process Eng., 2015, 15(1):164-168. [11] Koo M S , Cho K, Yoon J, et al. Photoelectrochemical Degradation of Organic Compounds Coupled with Molecular Hydrogen Generation Using Electrochromic TiO2 Nanotube Arrays. Environ. Sci. Technol., 2017, 51 (11), pp 6590–6598 [12] Linsebigler A L, Lu G, Yates Jr J T.Phtocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results[J ]. Chem. Rev., 1995, 95(3):735-758. [13] Choi J, Park H , Hoffmann M R . Effects of Single Metal-ion Doping on the Visible-light Photo Reactivity of TiO2[J]. J. Phys. Chem. C., 2010, 114 (2):783-792. [14] Tian B, Li C , Zhang J. One-step Preparation, Characterization and Visible-light Photocatalytic Activity of Cr-doped TiO2 With Anatase and Rutile Bicrystalline Phases[J]. Chem. Eng. J., 2012, 191(15): 402-409. [15] 景明俊, 王岩, 钱俊杰, 等. 水热法制备铂掺杂二氧化钛及其可见光催化性能[J]. 催化化学, 2012, 33(3): 550-556. Jing M J, Wang Y, Qian J J, et al. Preparation of Pt-Doped TiO2 by Hydrothermal Method and Its Photocatalytic Performance under Visible Light Irradiation[J]. Chinese J. Catal., 2012, 33(3): 550-556. [16 ] Khalid N.R. Hong Z L, Ahmed E, et al. Synergistic Effects of Fe and Graphene on Photocatalytic Activity Enhancement of TiO2 Under Visible Light[J]. Appl. Surf. Sci., 2012, 258:5827-5834. [17] 宋金玲, 周长才, 侯志鹏, 等. 溶胶-凝胶法制备掺杂钐的二氧化钛及其发光性能研究[J]. 过程工程学报, 2011, 11(1):143-147. Song J L, Zhou C C, Hou Z P, et al. Study on Synthesis of TiO2 Powder Doped with Sm by Sol-Gel Method and Its Photoluminescent Properties[J]. Chin. J. Process Eng., 2011, 11(1):143-147. [18] 刘瑞江, 张业旺, 闻崇炜, 等。正交试验设计和分析方法研究[J]. 实验技术与管理, 2010, 27(9):52-55. Liu R J, Zhang Y W, Wen C W, et al. Study on the design and analysis methods of orthogonal experiment[J]. Exp. Techn. Manage., 2010, 27(9):52-55. [19] 车红卫. 介孔纳米晶体金属氧化物材料的制备、表征及性能研究[D]. 山东大学博士学位论文, 2010, 23-29. Che H W. Synthesis, Characterization and Properties of Mesoporous Nanocrystalline Metal Oxide Materials[D]. Shandong University Doctoral Dissertation, 2010, 23-29. [20] Seigo I , Shoichiro Y , Tadashi W. Fabrication and Characterization of Meso-macroporous anatase TiO2 Films[J]. B. Chem. Soc. Jap., 2000, 73: 1933-1938. |
相关文章 0
No related articles found! |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3134