1. 中国科学院过程工程研究所生物质炼制工程北京市重点实验室,北京 100190 2. 中国科学院大学化学工程学院,北京 100190
收稿日期:
2018-06-12修回日期:
2018-07-25出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
陈洪章基金资助:
中国科学院洁净能源先导科技专项;2017年度北京创新基地培育与发展专项基金High-solid and multi-phases bio-reaction engineering
Lan WANG1, Yang LIU1,2, Hongzhang CHEN1*1. Beijing Key Laboratory of Biorefining Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-06-12Revised:
2018-07-25Online:
2018-10-22Published:
2018-10-12Contact:
CHEN Hong-zhang 摘要/Abstract
摘要: 以木质纤维素高固酶解发酵为例,高固形物及其复杂的理化性质会导致体系出现“固体效应”和“水束缚效应”,形成传质速度较低的固液气和微生物复杂多相体系,影响木质纤维素生物转化速率;同时,固形物增加及由此产生的高固酶解发酵流变学特性使以剪切力为主导的机械搅拌在高固多相体系下具有不适应性(会导致酶或微生物活性降低),从而对搅拌方式、反应器及过程设计放大等提出新的要求. 本工作基于课题组多年的研究,提出高固多相生物反应工程的理念,从固体基质特性入手剖析影响高固多相生物反应速率的关键因素,提出了以周期法向力为动力源的过程强化方法,开发出周期蠕动高固多相生物反应系统,以期为高固多相生物反应工程研究提供理论和技术支持.
引用本文
王岚 刘阳 陈洪章. 高固多相生物反应工程[J]. 过程工程学报, 2018, 18(5): 918-923.
Lan WANG Yang LIU Hongzhang CHEN. High-solid and multi-phases bio-reaction engineering[J]. Chin. J. Process Eng., 2018, 18(5): 918-923.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218232
http://www.jproeng.com/CN/Y2018/V18/I5/918
参考文献
[1]Chen H Z, Liu Z H.Enzymatic hydrolysis of lignocellulosic biomass from low to high solids loading[J].Engineering in Life Sciences, 2017, 17(5):489-499 [2] Kristensen J B, Felby C, Jorgensen H.Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose[J].Biotechnology for Biofuels, 2009, 2:- [3]Zhao J Y, Chen H Z.Correlation of porous structure,mass transfer and enzymatic hydrolysis of steam exploded corn stover[J].Chemical Engineering Science, 2013, 104(12m):1036-1044 [4]Zhu J, Wang G, Pan X, et al.Specific surface to evaluate the efficiencies of milling and pretreatment of wood for enzymatic saccharification[J].Chemical Engineering Science, 2009, 64(3):474-485 [5]Yang D, Parlange J Y, Walker L P.Revisiting size-exclusion chromatography for measuring structural changes in raw and pretreated mixed hardwoods and switchgrass[J].Biotechnol Bioeng, 2015, 112(3):549-559 [6]Arantes V, Saddler J N.Cellulose accessibility limits the effectiveness of minimum cellulase loading on the efficient hydrolysis of pretreated lignocellulosic substrates[J].Biotechnology for biofuels, 2011, 4(1):1-17 [7]Tanaka M, Ikesaka M, Matsuno R, et al.Effect of pore size in substrate and diffusion of enzyme on hydrolysis of cellulosic materials with cellulases[J].Biotechnology & Bioengineering, 1988, 32(5):698-706 [8]Grethlein H E.The Effect of Pore Size Distribution on the Rate of Enzymatic Hydrolysis of Cellulosic Substrates[J].Nature Biotechnology, 1985, 3(2):155-160 [9]Wang Q Q, He Z, Zhu Z, et al.Evaluations of cellulose accessibilities of lignocelluloses by solute exclusion and protein adsorption techniques[J].Biotechnology & Bioengineering, 2012, 109(2):381-389 [10] Chen, H Z.Gas Explosion Technology and Biomass Refinery[M]. Springer Netherlands, 2015. [11]Liu Z H, Chen H Z.Biomass–Water Interaction and Its Correlations with Enzymatic Hydrolysis of Steam-Exploded Corn Stover[J].Acs Sustainable Chemistry & Engineering, 2016, 4(3):1274-1285 [12] Shao M A, Wang Q J, Huang M B.Soil Physics[M]. Beijing: High Education Press, 2006. [13] 张玉针.生物质多孔颗粒特性及其高固酶解发酵过程的研究[D]. 中国科学院大学(中国科学院过程工程研究所), 2017. [14] Selig M J, Thygesen L G, Felby C.Correlating the ability of lignocellulosic polymers to constrain water with the potential to inhibit cellulose saccharification[J].Biotechnology for Biofuels, 2014, 7:- [15]Roberts K M, Lavenson D M, Tozzi E J, et al.The effects of water interactions in cellulose suspensions on mass transfer and saccharification efficiency at high solids loadings[J].Cellulose, 2011, 18(3):759-773 [16]Felby C, Thygesen L G, Kristensen J B, et al.Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR[J].Cellulose, 2008, 15(5):703-710 [17]Roche C M, Dibble C J, Knutsen J S, et al.Particle concentration and yield stress of biomass slurries during enzymatic hydrolysis at high-solids loadings[J].Biotechnology & Bioengineering, 2009, 104(2):290-300 [18]Um B H, Hanley T R.A comparison of simple rheological parameters and simulation data for Zymomonas mobilis fermentation broths with high substrate loading in a 3-L bioreactor[J].Appl Biochem Biotechnol, 2008, 145(1-3):29-38 [19] Liu Z H, Chen H Z.Periodic peristalsis enhancing the high solids enzymatic hydrolysis performance of steam exploded corn stover biomass[J].Biomass & Bioenergy, 2016, 93:13-24 [20] Liu Z H, Chen H Z.Periodic peristalsis releasing constrained water in high solids enzymatic hydrolysis of steam exploded corn stover[J].Bioresource Technology, 2016, 205:142-152 [21] Chen H Z.Chen H Z. High-solid and Multi-phase Bioprocess Engineering: Theory and Practice [M]. Springer Singapore,2018. |
相关文章 1
[1] | 张智卢旭晨闫岩王体壮. 碳化硅基浆料的流变性能[J]. , 2010, 10(2): 226-230. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3121