1. 河北工业大学海洋科学与工程学院,天津 300130 2. 河北工业大学化工学院,天津 300130
收稿日期:
2018-02-19修回日期:
2018-04-26出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
张少峰Heat transfer characteristics of self-wetting solution and nanotube surface
Xianghua SI1, Baisong HU2, Shaofeng ZHANG2*, Dewu WANG2, Weiming YU21. School of Marine Science and Engineering, Hebei University of Technology, Tianjin 300130, China 2. School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
Received:
2018-02-19Revised:
2018-04-26Online:
2019-02-22Published:
2019-02-12Contact:
ZHANG Shao-feng 摘要/Abstract
摘要: 采用阳极氧化法在光滑钛板表面制备了高度有序的纳米管表面,利用扫描电镜、原子力显微镜和全自动接触角测量仪表征了纳米管表面和光滑表面的形貌及表面特性,配制自润湿溶液并进行热物性测定,将不同的加热面(光滑表面和纳米管表面)与不同工质(蒸馏水和自润湿溶液)组合进行池沸腾实验,从不同角度对比了不同组合工况的传热效果,从微观和宏观两方面对纳米管表面和自润湿溶液耦合强化传热的机理进行了分析。结果表明,具有超亲水性和较大粗糙度的纳米管表面与自润湿性溶液耦合时,最大传热系数和临界热流密度较高,分别为11.963 kW/(m2?℃)和623.706 kW/m2,比光滑表面与蒸馏水的常规组合传热分别提高了84.1%和143.8%。纳米管表面和自润湿溶液对系统的最大传热系数和临界热流密度强化作用稍有不同,二者协调强化沸腾传热性能。纳米管表面具有更多的有效汽化核心、更大的粗糙度和更好的润湿性,结合自润湿溶液特殊的表面张力特性形成冷热液体微循环,促进冷热液体运动,及时进行二次润湿,大幅减小气泡脱离直径,提高其脱离频率,出现微气泡,增加了对系统的扰动,有效增强了传热性能,是提高系统最大传热系数和临界热流密度的主要原因。
引用本文
司祥华 胡柏松 张少峰 王德武 余伟明. 纳米管表面和自润湿溶液相耦合的传热性能[J]. 过程工程学报, 2019, 19(1): 73-82.
Xianghua SI Baisong HU Shaofeng ZHANG Dewu WANG Weiming YU. Heat transfer characteristics of self-wetting solution and nanotube surface[J]. Chin. J. Process Eng., 2019, 19(1): 73-82.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218131
http://www.jproeng.com/CN/Y2019/V19/I1/73
参考文献
[1] 宋治璐.不同结构传热元件传热与阻力特性数值模拟与实验研究[D]. 上海:上海交通大学,2013:5-10. Song Z L. Numerical simulation and experimental research on heat transfer and resistance characteristics of heat transfer elements[D]. Shanghai:Shanghai Jiao Tong University, 2013. [2] 张平,宣益民,李强. 界面接触热阻的研究进展[J]. 化工学报, 2012, 63(2):335-349. Zhang P,Xuan Y M,Li Q. Development on thermal contact resistance[J]. CIESC Journal, 2012, 63(2):335-349. [3] 刘明言,王红,王燕. 表面工程技术应用于蒸发器的防垢及沸腾传热强化的研究进展[J].化工进展, 2007, 26(3):442-447. Liu M Y,Wang H,Wang Y. Progress on fouling prevention and enhancement of boiling heat transfer in evaporator with surface engineering technique [J]. CIESC Journal, 2007, 26(3):442-447. [4] 谭华玉,高春阳,刘立新. 多孔表面的制造方法及其强化沸腾传热效果的比较[J].流体机械, 2006, 34(1):80-85. Tan H Y,Gao C Y,Liu L X. Manufacturing methods of porous surface and comparison of enhanced boiling[J]. Fluid Machinery, 2006, 34(1):80-85. [5] 刘贞贞,赵镇南. 机械加工表面多孔管外池核沸腾实验研究[J]. 石油化工设备, 2006, 35(4):21-24. Liu Z Z,Zhao Z N. Experimental study on nucleate pool boiling heat transfer for mechanically fabricated porous surface tube J]. Petro-Chemical Equipment, 2006, 35(4):21-24. [6] Vemuri S,Kim K J. Pool boiling of saturated FC-72 on nano-poroussurface [J]. International Communications in Heat and Mass Transfer, 2005, 32(1/2):27-31. [7] Furberg R. Ehanced boiling heat transfer from a novel nanodendritic micro-porous copper structure [D]. Stockholm: KTH School of Industrial Engineering and Management, 2006: 2. [8] Yu Y J,Osada H,Inagaki M,et al. Wall thermal conductivity effects on nucleation site interaction during boiling:an experimental study[C] // Gritzo L. .14th International Heat Transfer Conference. Washington D.C.:ASME Heat Transfer, 2010:135-160. [9] 陈宏霞,马福民,黄林滨. 金属丝网超亲/疏水性强化气液相界面运动[J]. 化工学报, 2016, 67(6):2318-2324. Chen H X,Ma F M,Huang L B. Super-wettability meshes enhance movement of gas-liquid interface[J] . CIESC Journal, 2016, 67(6):2318-2324. [10] Zhang B J,Kim K J. Nucleate pool boiling heat transfer augmentation on hydrophobic self-assembly mono-layered alumina nano-porous surfaces[J]. International Journal of Heat and Mass Transfer.2014, 73(9):551-561. [11] 郑晓欢,纪献兵,王野,等. 超亲/疏水性表面池沸腾传热研究[J]. 化工进展, 2016, 35(12):3793-3798. Zheng X H,Ji X B,Wang Y,et al. Pool boiling heat transfer on superhydrophilic and superhydrophobic surfaces[J]. CIESC Journal, 2016, 35(12):3793-3798. [12] Xu Jia,Yang MingJie,Xu JinLiang,et al. Vertically oriented TiO2 nanotube arrays with different anodization times for enhanced boiling heat transfer[J]. SCIENCE CHINA echnological Sciences, 2012, 55(8):2184-2190. [13] 陈粤,莫冬传,赵洪彬,等. 二氧化钛纳米管界面沸腾特性[J].工程热物理学报, 2009, 30(1):638-640. Chen E,Mo D C,Zhao B B,et al. Pool bolling performance at Tio2 nanotube interface[J] . Journal of Engineering Thermophysics, 2009, 30(1):638-640. [14] 邓 鹏,陶金亮,魏 峰,等. 纳米管阵列表面池沸腾强化传热实验[J]. 化工进展, 2012, 31(10):2172-2175. Deng P,Tao J L,Wei F,et al. Experimental study on enhanced boiling heat transfer on nanotube arrays surface[J].CIESC Journal, 2012, 31(10):2172-2175. [15] SitaR A,Golobic I. Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels [J]. International Journal of Heat & Mass Transfer, 2015, 81(2):198-206. [16] Sahu R P,Sinha-ray S,Sinha-ray S,et al. Pool boiling of Novec 7300 and self-rewetting fluids on electrically-assisted supersonically solution-blown, copper-plated nanofibers[J]. International Journal of Heat & Mass Transfer, 2016, 95(4):83-93. [17] Francescantonio n D,Savino R,Abe Y. New alcohol solutions for heat pipes: Marangoni effect and heat transfer enhancement[J]. International Journal of Heat & Mass Transfer, 2008, 51(25/26):6199-6207. [18] Hetsroni G,Mosyak a,Rozenblit r,et al. Natural convection boiling of water and surfactant solutions having negligible environmental impact in vertical confined space[J].Int. J. Multiphase Flow, 2009, 35(1):20-33. [19] Inoue T,Teruya y,Monde M.Enhancement of pool boiling heat transfer in water and ethanol/water mixtures with surface-active agent[J]. Int. J. Heat Mass Transfer, 2004, 47(25): 5555-5563. [20] Jeong Y H,Chang W J,Chang S H.Wettability of heated surfaces under pool boiling using surfactant solutions and nano-fluids[J]. Int. J. Heat Mass Transfer, 2008, 51(11/12):3025-3031. [21] Yang Y M,Lin C Y,Liu M H,et al. Lower limit of the possible nucleate pool-boiling enhancement by surfactant addition to water[J]. Journal of Enhanced Heat Transfer, 2002, 9(3/4):153-160. [22] 王晔春,彭晓峰,郭烈锦. 表面活性剂强化双组分混合工质沸腾换热实验研究[J].工程热物理学报, 2008, 29(10):1708-1711. Wang Y C,Peng X F,Guo L J. Pool bolling heat transfer enhancement in binary mixtures by surfactant additives[J]. Journal of Enhanced Heat Transfer, 2008, 29(10):1708-1711. [23] Bonilla C.F.,Perry C.W.. Heat transmission to boiling binary liquid mixtures[J]. Trans.AIChE, 1941(37):685–705. [24] Morovati M.,Bindra H.,EsakI S.,et al. Enhancement of pool boiling and critical heat flux in self-rewetting fluids at above atmospheric pressures[C]//ASME. Proceedings of the ASME/JSME 2011 Eighth Thermal Engineering Joint Conference 2011, Hawaii:American Society of Mechanical Engineers, 2011:44593. [25] Shoji M.. Boiling Heat Transfer of Butanol Aqueous Solution [J] .Asme International Conference on Nanochannels, 2013:649-654. [26] Zhou L, Li Y, Wei l, et al. Multi-jet flows and bubble emission during subcooled nucleate boiling of aqueous n-butanol solution on thin wire[J]. Experimental Thermal & Fluid Science, 2014, 58(10):1-8. [27] Anze sitAR,Iztok GOLOBIC. Heat transfer enhancement of self-rewetting aqueous n-butanol solutions boiling in microchannels[J]. International Journal of Heat and Mass Transfer, 2015(81):198–206. [28] 胡艳鑫. 自湿润流体流动传热机理及高效振荡热管特性研究[D].广东:华南理工大学, 2015:21-28. Hu Y X. Research on flow and heat transfer mechanism of self-rewetting fluid and characteristics of efficient oscillating heat pipe[D]. Guangdong: South China University Of Technology, 2015:21-28. [29] Wenzel R N. Resistance of solid surfaces to wetting by water[J]. Industrial and Engineering Chemistry, 1936, 28(8):988-994. [30] O′hanley H,Coyle C,Buongiorno J,et al. Separate effects of surface roughness, wettability, and porosity on the boiling critical heat flux[J]. Applied Physics Letter, 2013, 103(2):024102-024192-5. |
相关文章 9
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 李雅侠 张元 张静 寇丽萍 龚斌 吴剑华. 射流强化螺旋通道内流体流动与换热的数值模拟[J]. 过程工程学报, 2020, 20(8): 896-903. |
[3] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[4] | 鲁进利 吕勇军 韩亚芳 钱付平. 细小槽道换热器内相变微胶囊悬浮液对流传热DPM模拟[J]. 过程工程学报, 2018, 18(5): 951-956. |
[5] | 董新宇 毕勤成 桂淼. 钛合金螺旋扭曲管内强迫对流实验分析[J]. 过程工程学报, 2018, 18(2): 274-279. |
[6] | 张静 张艳秋 吴剑华. 螺距和搭接对螺旋半管夹套强化传热的影响[J]. 过程工程学报, 2017, 17(4): 697-703. |
[7] | 彭德其谭卓伟张浪吴淑英刘阳. 换热器换热管内插螺旋流态化传热及除防垢的影响因素[J]. 过程工程学报, 2015, 15(6): 935-939. |
[8] | 彭德其张浪俞天兰吴淑英支校衡陈前. 管内螺旋液固两相流的流动行为及传热[J]. , 2015, 15(1): 45-49. |
[9] | 马学虎;宋天一;兰忠;周兴东. 分割表面对蒸汽滴状冷凝传热特性的影响[J]. , 2007, 7(3): 472-475. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3207