删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

厌氧活性污泥产电特性及产电过程微生物群落变化

本站小编 Free考研考试/2022-01-01

丁建军1,2, 彭小伟1*, 韩业君1*
1. 中国科学院过程工程研究所生化工程国家重点实验室,北京 1001902. 中国科学院大学生命科学学院,北京 100049
收稿日期:2018-03-19修回日期:2018-04-23出版日期:2019-02-22发布日期:2019-02-12
通讯作者:韩业君

基金资助:国家自然科学基金资助项目;国家高技术发展计划863计划项目;海南省重点研发计划

Electricity production and microbial community change of anaerobic sludge

Jianjun DING1,2, Xiaowei PENG1*, Yejun HAN1*
1. State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China2. College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Received:2018-03-19Revised:2018-04-23Online:2019-02-22Published:2019-02-12







摘要/Abstract


摘要: 以厌氧活性污泥为接种液构建微生物燃料电池(MFC),检测了运行第1周期前后电池的理化性质及菌群变化情况。结果表明,MFC启动后产电性能良好,外接1000 Ω电阻时输出电压可达0.62 V,功率密度达1247 mW/m2,内阻为143 Ω, 化学需氧量(COD)去除率达63.6%;高通量测序结果显示,MFC菌群与原始接种厌氧活性污泥菌群相比变化较明显,菌群多样性指数降低,优势菌门硬壁菌门(Firmicutes)和变形菌门(Proteobacteria)为产电菌群常见门,与MFC产电能力直接相关的克雷伯氏菌属(Klebsiella)富集并成为优势菌属,相对丰度达16.73%。

引用本文



丁建军 彭小伟 韩业君. 厌氧活性污泥产电特性及产电过程微生物群落变化[J]. 过程工程学报, 2019, 19(1): 209-215.
Jianjun DING Xiaowei PENG Yejun HAN. Electricity production and microbial community change of anaerobic sludge[J]. Chin. J. Process Eng., 2019, 19(1): 209-215.



使用本文




0
/ / 推荐

导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218152
http://www.jproeng.com/CN/Y2019/V19/I1/209







[1] Trapero J R,Horcajada L, Linares J J, et al. Is microbial fuel cell technology read- An economic answer towards industrial commercialization [J]. Applied Energy, 2017, 185(1):698-707.
[2] 黄霞, 梁鹏, 曹效鑫, 等. 无介体微生物燃料电池的研究进展 [J]. 中国给水排水, 2007, 23(4):1-6.
Huang X, Liang P, Cao X X, et al. Progress in research of Mediator-less Microbial Fuel Cells [J]. China Water and Waterwater, 2007, 23(4):1-6.
[3]  孙建, 胡勇有. 废水处理新理念———微生物燃料电池技术研究进展[J].工业用水与废水, 2008, 29(1):1-6.
Sun J, Hu Y Y. Research Progress of a Novel Notion for Wastewater Treatment——Microbial Fuel Cell Technology [J]. Industrial Water and Wastewater, 2008,29(1):1-6.
[4] Hosseini S E,Wahid M A. Biogas Utilization: Experimental Investigation on Biogas Flameless Combustion in Lab-scale Furnace [J]. Energy Conversion and Management, 2013,74(8):426-432.
[5] Kim J R, Min B, Logan B E. Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production [J]. Applied Microbiology and Biotechnology, 2005, 68(1): 23-30.
[6] Michael J M, Venkata G P, Kyoung Y K, et al. Electricity from Methane by Reversing Methanogenesis [J]. Nature Communications, 2017, 8, 15419.
[7] Langille MGI, Zaneveld J, Caporaso JG, et al. Predictive Functional Profiling of Microbial Communities Using 16S rRNA Marker Gene Sequences [J]. Nature Biotechnology, 2013, 31(9): 814–821.
[8] Shindell D T, et al. Improved Attribution of Climate Forcing to Emissions [J]. Science,2009, 326 (5953), 716-718.
[9] Lee S Y, Kim H U. Systems Strategies for Developing Industrial Microbial Strains [J]. Nature Biotechnology, 2015, 33(10), 1061-1072.
[10] Parkdh Z. Improved Fuel Cell and Electrode Designs for Producing Electricity from Microbial Degradation [J]. Biotechnology and Bioengineering, 2003,81(3):348-355.
[11] 尹亚琳, 高崇洋, 赵阳国, 等. 好氧-厌氧混合污泥启动微生物燃料电池产电性能及微生物群落动态特征 [J]. 微生物学报. 2014. 12. 54(12):1471-1480.
Yin Y L, Gao C Y, Zhao Y G, et al. Electricity Generation and Dynamics Characteristics of Microbial Community of Microbial Fuel Cells Started up with Mixture of Aerobic/Anaerobic Sludge [J]. Acta Microbiologica Sinica. 2014. 12. 54(12):1471-1480.
[12] Quan XC, Quan YP, Tao K, et al. Comparative Investigation on Microbial Community and Electricity Generation in Aerobic and Anaerobic Enriched MFCs [J]. Bioresource Technology, 2013, 128 (128C): 259- 265.
[13] Oh SE, Min B, Logan BE. Cathode Performance as a Factor in Electricity Generation in Microbial Fuel Cells [J].Environmental Science and Technology, 2004, 38(18): 4900?4904.
[14] 李凤祥, 周启星, 李白. 产电菌群及电子受体对微生物燃料电池性能的影响[J]. 应 用 生 态 学 报, 2009, 20(12): 3070-3074.
Li F X, Zhou Q X, Li B. Effects of Exoelectrogens and Electron Acceptors on the Performance of Microbial Fuel Cells [J]. Cinese Journal of Applied Ecology, 2009, 20(12): 3070-3074.
[15] Liu ZH, Li XM, Jia B, et al. Production of Electricity from Surplus Sludge Using a Single Chamber Floating-cathode Microbial Fuel Cell [J]. Water Science and Technology, 2009, 60(9): 2339?2404.
[16] 张建民, 魏佳齐, 崔心水, 等. 双阴极 MFC 启动过程中的电化学特性 [J]. 环境工程学报, 2017, 12(11):6252-6258.
Zhang J M, Wei J Q, Cui X S, et al. Electrochemical Characterization of Dual Cathode MFC During Start-up Phase [J]. Chinese Journal of Environmental Engineering, 2017,12(11): 6252-6258.
[17] 付国楷, 张林防, 郭飞, 刘进, 等. 榨菜废水MFC多周期运行产电性能及COD降解 [J]. 中国环境科学, 2017, 37(4):140l-1407.
Fu G K, Zhang L F, Guo F, Liu J, et al. Electricity generation and COD removal of MFC using mustard tuber wastewater as substrate in multi-cycle running [J]. China Environmental Science, 2017, 37(4):140l-1407.
[18] 李颖,孙永明,孔晓英. 微生物燃料电池中产电微生物的研究进展 [J]. 微生物学通报, 2009, 32 (9) :1404-1409.
Li Ying, Sun Y M, Kong X Y, et al. Progress in Research of Electrigens in Microbial Fuel Cell [J]. Microbiology, 2009, 36(09):1404-1409.
[19] Liu M, Yuan Y, Zhang L X, et al. Bioelectricity Generation by a Gram-positive Corynebacterium sp StrainMFC03 under Alkaline Condition in Microbial Fuel Cells [J]. Bioresource Technology, 2010, 101(6):1807-1811.
[20] Zhang LX, Zhou S G, Zhuang L , et al. Microbial Fuel Cell Based on Klebsiella Pneumoniae Biofilm [J]. Electrochemistry Communications, 2008, 10(10):1641-1643.
[21] 曹荣, 刘淇, 赵玲, 等. 基于高通量测序的牡蛎冷藏过程中微生物群落分析 [J]. 农业工程学报, 2016, 32(20): 275-280.
Cao R, LIU Q, Zhao L, et al. Microbial Flora Analysis of Oyster During Refrigerated Storage by High Throughput Sequencing Technology[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(20): 275-280.
[22] Howarth R W, Santoro R, Ingraffea A. Methane and the Greenhouse-gas Footprint of Natural Gas from Shale Formations [J]. Climatic Change, 2011, 106 (4) :679-691.
[23] Chen S, et al. Proteiniphilum Acetatigenes gen. nov., sp. nov., From a UASB Reactor Treating Brewery Wastewater[J]. International Journal of Systematic and Evolutionary Microbiology, 2005, 55(6):2257-2261.
[24] Rachel N V H,,Joanne M S. Arsenite Oxidation by the Heterotrophy Hydrogenophaga sp. nov.NT-14:the Arsenite Oxidase and its Physiological Electron Accaptor. Biochimica et Biophysica Acta-Bioenergetics, 2004, 1656(2-3):148-155.
[25] Sun L W, Toyonaga M, Ohashi A, et al. Lentimicrobium Saccharophilum gen. nov., sp.nov., a strictly anaerobic bacterium representing anew family in the phylumBacteroidetes, and proposal of Lentimicrobiaceae fam. Nov [J]. International Journal of Systematic and Evolutionary Microbiology, 2016, 66 (7): 2635-2642.
[26] Sharma V, Kundu P P. Biocatalysts in Microbial Fuel Cells [J]. Enzyme and Microbial Technology, 2010, 47(5):179-188.




[1]孙灵 诸林 何阳东. 基于链式循环二氧化碳重整的甲烷制甲醇过程火用分析[J]. 过程工程学报, 2020, 20(7): 822-831.
[2]吕秋楠 李小森 李刚 陈朝阳. 水合物法分离低浓度煤层气中的甲烷[J]. 过程工程学报, 2019, 19(6): 1129-1134.
[3]吴文亮 李涛 高红帅 尚大伟 涂文辉 王斌琦 张香平. 咪唑类离子液体高效吸收二氯甲烷[J]. 过程工程学报, 2019, 19(1): 173-180.
[4]薄涛 季民. 筒状单室不锈钢电极微生物燃料电池回收重金属铅可行性分析[J]. 过程工程学报, 2018, 18(4): 858-865.
[5]王斌琦 张香平 尚大伟 冯建朋 吴慧 张彦春 李建伟. [Bmim][PF6]高效吸收二氯甲烷及流程模拟[J]. 过程工程学报, 2018, 18(1): 82-87.
[6]李斌 伍联营 张伟涛 王颖 胡仰栋. 盐差发电系统的模拟优化[J]. 过程工程学报, 2017, 17(5): 1097-1101.
[7]楚化强曹文健冯艳任飞徐靖顾明言. 二氧化碳和富氧空气对甲烷与乙烯燃烧的影响[J]. 过程工程学报, 2016, 16(3): 470-476.
[8]郑蓓蕾林倩潘红艳刘秀娟赵敏陈政杨春亮. 响应面法优化甲烷吸附用活性炭的镍改性工艺[J]. 过程工程学报, 2016, 16(3): 431-437.
[9]张小婷彭罗李振轮. 基于降低阳极活化过电势的MFC性能优化研究进展[J]. , 2014, 14(3): 527-534.
[10]宋天顺吴夏芫范平周楚新. 以加热预处理污泥上清液为底物的微生物燃料电池基础特性[J]. , 2012, 12(5): 844-848.
[11]吴夏芫宋天顺支银芳周楚新俞俊杰朱隽瑶. 小球藻生物阴极型微生物燃料电池的基础特性[J]. , 2012, 12(1): 131-135.
[12]胡大成高加俭贾春苗平原贾丽华王莹利许光文古芳娜苏发兵. 甲烷化催化剂及反应机理的研究进展[J]. , 2011, 11(5): 880-893.
[13]岳学海赵书菊王许云郭庆杰. 厌氧流化床无膜微生物燃料电池的床层膨胀高度与产电特性[J]. , 2011, 11(2): 199-203.
[14]闫忠元陈朝阳李小森李清平颜克凤. 盐水体系中环戊烷-甲烷水合物相平衡测定与模拟[J]. , 2010, 10(3): 476-481.
[15]李庆勋刘业飞王铁峰. 甲烷非催化部分氧化制乙炔和合成气过程的实验研究[J]. , 2010, 10(3): 536-541.





PDF全文下载地址:

http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3216
相关话题/微生物 过程 工程 优化 北京