沈阳航空航天大学能源与环境学院,辽宁 沈阳 110136
收稿日期:
2018-01-19修回日期:
2018-04-19出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
徐凌锋基金资助:
国家重点基础研究发展计划项目Numerical simulation on heat transfer in a cylindrical fluidized bed
Lijun WANG*, Shuping DUAN, Lingfeng XU, Jiajun SUNCollege of Energy and Environment, Shenyang Aerospace University, Shenyang, Liaoning 110136, China
Received:
2018-01-19Revised:
2018-04-19Online:
2019-02-22Published:
2019-02-12摘要/Abstract
摘要: 对Shedid等搭建的圆柱体流化床采用欧拉?欧拉法进行三维数值模拟,考察了颗粒球形度、表观进气速度和床料初始堆积高度对流化床内垂直加热壁面与流动床料之间对流传热特性的影响,采用有效导热系数分别计算气相和固相的对流传热系数。结果表明,随表观进气速度增大,流化床内颗粒物料湍流运动加剧,加热壁面平均温度和流体平均温度下降,壁面流体间传热平均温度差减小,壁面流体间对流传热系数增大;随初始床料高度增加,流化床内颗粒与加热壁面的接触面积增大,导致固相平均对流传热系数增大。
引用本文
王力军 段叔平 徐凌锋 孙嘉君. 柱形流化床传热特性的数值模拟[J]. 过程工程学报, 2019, 19(1): 110-117.
Lijun WANG Shuping DUAN Lingfeng XU Jiajun SUN. Numerical simulation on heat transfer in a cylindrical fluidized bed[J]. Chin. J. Process Eng., 2019, 19(1): 110-117.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218119
http://www.jproeng.com/CN/Y2019/V19/I1/110
参考文献
[1] Liu R, Jin B, Zhong Z et al. Reduction of bed agglomeration in CFB combustion biomass with aluminum-contain bed material [J]. Process Saf.Environ. Prot, 2007, 85 (B5): 441–445. [2] Kalita P, Saha U K, Mahanta P. Parametric study on the hydrodynamics and heat transfer along the riser of a pressurized circulating fluidized bed unit [J]. Experimental Thermal and Fluid Science, 2013, 44: 620–630. [3]Mohammad A Dehnavi, Shahrokh Shahhosseini, S Hassan Hashemabadi et al. CFD simulation of hydrodynamics and heat transfer in gas phase ethylene polymerization reactors. International Communications in Heat and Mass Transfer. 2010, 37: 437–442. [4] Lim K S, Gururajan V S, Agarwal P K. Mixing of Homogeneous Solids in Bubbling Fluidized Beds: Theoretical Modelling and Experimental Investigation using Digital Image Analysis [J]. Chemical Engineering Science, 1993, 48(12): 2251-2265. [5] Gao J S, Lan X Y, Fan Y P, et al. Hydrodynamics of Gas-solid Fluidized Bed of Disparately Sized Binary Particles [J]. Chemical Engineering Science, 2009, 64(20): 4302-4316. [6] Yusuf R, Halvorsen B, M Christian Melaaen. Eulerian–Eulerian simulation of heat transfer between a gas–solid fluidized bed and an immersed tube-bank with horizontal tubes [J]. Chem. Eng. Sci. 2011, 66, 1550–1564. [7] Shuyan W, L Guodong, W Yanbo et al. Numerical investigation of gas-to-particle cluster convective heat transfer in circulating fluidized beds [J]. Int. J. Heat Mass Transfer, 2010, 53, 3102–3110. [8] Abdelmotalib H M, Ko D G, Ik-Tae Im. A study on wall-to-bed heat transfer in a conical fluidized bed combustor [J]. Appl. Therm. Eng. 2016, 99, 928-937. [9] Armstrong L M, Gu S, Luo K H. Study of wall-to-bed heat transfer in a bubbling fluidised bed using the kinetic theory of granular flow [J]. Int. J. Heat Mass Transfer, 2010, 53, 4949-4959. [10] Lu Y, Zhang T, Dong X. Bed to wall heat transfer in supercritical water fluidized bed: comparison with the gas-solid fluidized bed [J]. App;. Therm.Eng. 2015, 88, 297-305. [11] Mostafazadeh M, Rahimzadeh M, Hamzei M. Numerical analysis of the mixing process in a gas–solid fluidized bed reactor [J]. Powder Technol, 2013, 239, 422-433. [12] Gidaspow D. Hydrodynamics of Fluidization and Heat Transfer: Supercomputer Modeling [J]. Appl.Mech.Rev, 1986, 39, (1),1-23. [13] Dong N H, Armstrong L M, Gu S et al. Effect of tube shape on the hydrodynamics and tube-to-bed heat transfer in fluidized beds [J]. Appl. Therm. Eng. 2013, 60, 472-479. [14] Behjat Y, Shahhosseini S, Hashemabadi S H. CFD modeling of hydrodynamic and heat transfer in fluidized bed reactors [J]. Int. Commun. Heat Mass Transfer, 2008, 35, 357-368. [15] Schmidt A, Renz U. Eulerian computation of heat transfer in fluidized beds [J]. Chemical Engineering Science, 1999, 54, 5515-5522. [16] Armstrong L M, Gu S, Luo K H, The influence of multiple tubes on the tube-to-bed heat transfer in a fluidized bed [J]. International Journal of Multiphase Flow, 2010, 36, 916-929. [17] Mohamed H Shedid, M A M Hassan. Heat transfer characteristics of the ?uidized bed through the annulus [J]. Heat Mass Transfer, 2016, 52, 1943–1952. [18] Natale F D, Amedeo. Lancia, Roberto Nigro. Surface-to-bed heat transfer in fluidised beds: Effect of surface shape [J]. Powder Technology, 2007, 174, 75–81. [19] Gidaspow D, He Y, Lu H. Hydrodynamic modeling of binary mixture in a gas bubbling fluidized bed using the kinetic theory of granular flow [J]. Chemical Engineering Science, 2003, 58, 1197-1205. [20] Ergun S. Fluid Flow Through Packed Columns [J]. Journal of Materials Science & Chemical Engineering, 1952, 48(2), 89-94. [21] Wen C Y, Yu Y H. Mechanics of Fluidization [J]. Chemical Engineering Progress Symposium Series, 1966, 62, 100-111. [22+] Leina Hua, Hu Zhao, Jun Li et al. Eulerian-Eulerian simulation of irregular particles in dense gas-solid fluidized beds. Powder Technology, 2015, 284, 299-311. [23] Samy M El-Behery, El-Askary W A, Mofreh H Hamed et al. Hydrodynamic and thermal fields analysis in gas-solid two-phase flow [J]. International Journal of Heat and Fluid Flow, 2011, 32, 740–754. [24] J A M Kuipers, W Prints, W P M van Swaaij. Calculation of wall-to-bed heat transfer coefficients in gas-fluidized beds [J]. AIChE Journal, 1992, 38, 1079-1091. [25] Patil D J, Smit J, M van Sint Annaland et al. Wall-to-bed heat transfer in gas-solid bubbling fluidized bed [J]. AIChE Journal, 2006, 52, 58-74. [26]Olsson S E, Almstedt A E. Local instantaneous and time-averaged heat transfer in a pressurized fluidized bed with horizontal tubes: influence of pressure, fluidization velocity and tube-bank geometry [J]. Chem. Eng. Sci. 1995, 50, 3231–3245. |
相关文章 15
[1] | 史亚琪 李彦君 杜玉朋 任万忠. 气-固微型流化床压降特性及最小流化速度的实验研究[J]. 过程工程学报, 2021, 21(4): 420-430. |
[2] | 龚庆超 王健乔 方冬东 段锋 张丽徽. 铁基载氧体与干化市政污泥二元混合物流化特性[J]. 过程工程学报, 2020, 20(8): 904-911. |
[3] | 郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399. |
[4] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[5] | 冯留海 冯钰琦 赵杰 门卓武 李希 卜亿峰. 气固流化床内费托铁基催化剂的流化特性[J]. 过程工程学报, 2020, 20(3): 302-307. |
[6] | 黎义斌 梁开一 李正贵. 基于流固耦合的斜轴式搅拌器水力性能数值分析[J]. 过程工程学报, 2020, 20(12): 1424-1431. |
[7] | 马树辉 王若瑾 王德武 刘燕 张少峰. Geldart A类颗粒节涌床气固流动特性的实验及模拟[J]. 过程工程学报, 2019, 19(5): 967-974. |
[8] | 陈飞国 葛蔚. 耦合粗粒化离散颗粒法和多相物质点法的气固两相流模拟[J]. 过程工程学报, 2019, 19(4): 651-660. |
[9] | 刘凤霞 李永强 许晓飞 董鑫 刘志军. 微曝氧化沟气液两相传质模型构建及传质影响因素分析[J]. 过程工程学报, 2019, 19(4): 676-684. |
[10] | 熊文真 徐建新 黄峻伟. 直接接触沸腾换热过程连续相特征提取及分布规律[J]. 过程工程学报, 2019, 19(4): 704-713. |
[11] | 陈鑫 肖颀 管小平 杨宁. 内置涡流发生器的管内过冷沸腾与强化换热的模拟[J]. 过程工程学报, 2019, 19(3): 524-532. |
[12] | 雷杰 王昱 马明 李培生 张莹. 基于FTM方法的双气泡融合特性模拟[J]. 过程工程学报, 2019, 19(2): 263-270. |
[13] | 冯蘅 李清海 蒙爱红 张衍国 孔博. 颗粒团聚对稀相气固流动脉动关联项的影响[J]. 过程工程学报, 2019, 19(2): 279-288. |
[14] | 时瑶 王德武 赵斌 张少峰 梁凯光 马树辉. 旋流筛板式气固挡板流化床内压力脉动特性[J]. 过程工程学报, 2019, 19(1): 91-101. |
[15] | 孙昊延 朱庆山 李洪钟. 钒钛磁铁矿流态化直接还原技术现状与发展趋势[J]. 过程工程学报, 2018, 18(6): 1145-1159. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3211