1. 昆明理工大学冶金与能源工程学院,云南 昆明 650093 2. 中国科学院过程工程研究所绿色过程与工程重点实验室,湿法冶金清洁生产技术国家工程实验室,北京 100190
收稿日期:
2018-04-10修回日期:
2018-07-13出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
王东基金资助:
国家自然科学基金资助项目;国家自然科学基金资助项目;省部共建复杂有色金属资源清洁利用国家重点实验室开放课题Centrifugal field enhanced oil-water phase separate in Si/SiC separation process of silicon wire-saw waste
Zhankui WANG1,2, Dong WANG2*, Zhi WANG2, Wenhui MA1, Xiaohan WAN11. Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming, Yunnan 650093, China 2. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
Received:
2018-04-10Revised:
2018-07-13Online:
2019-02-22Published:
2019-02-12摘要/Abstract
摘要: 对切割料中Si和SiC的高效分离进行了研究,利用晶硅切割废料中Si和SiC表面性质的差异,向浆料中加入柴油并充分乳化,使SiC吸附在油滴上实现Si/SiC分离,对乳化后的浆料施加离心力强化油水分相,调节浆料pH值改变颗粒表面Zeta电位,调控乳化后的油滴大小,研究了Si/SiC分离效果、分相时间与浆料pH的关系及附有SiC的油滴表观密度与油滴直径的关系,对乳化后的浆料分别施加超重力系数为10, 50, 100, 150和200的离心力,考察了离心时间2 min时的分相效果和Si/SiC分离效果。结果表明,常重力场中,油滴尺寸越小,分相时间越长,但SiC去除效果变好,pH=7时,水相SiC含量为4.23wt%。油滴直径小于64 ?m时,油滴在浆料中不可上浮。离心场中,超重力系数为100, pH=7时,水相中SiC含量为5.47wt%,分相时间由460 min缩短为2 min。通过对离心场中SiC的受力分析解析了离心场中SiC在油滴表面的赋存状态,证实离心场作用下,SiC沿油滴表面向离心力方向移动使油滴对SiC的吸附力减小。
引用本文
王占奎 王东 王志 马文会 万小涵. 离心场强化晶硅切割废料Si/SiC分离过程油水分相[J]. 过程工程学报, 2019, 19(1): 118-125.
Zhankui WANG Dong WANG Zhi WANG Wenhui MA Xiaohan WAN. Centrifugal field enhanced oil-water phase separate in Si/SiC separation process of silicon wire-saw waste[J]. Chin. J. Process Eng., 2019, 19(1): 118-125.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218175
http://www.jproeng.com/CN/Y2019/V19/I1/118
参考文献
[1]于志强,马文会,等.改良西门子法和冶金法生产太阳能级多晶硅对环境负荷影响的比较[J].过程工程学报, 2016, 16(06):1009-1015 [2] Gopala Krishna Murthy, H.Evolution and present status of silicon carbide slurry recovery in silicon wire sawing[J].Resources, Conservation and Recycling, 2015, 104(104):194-205 [3]邢鹏飞,赵培余,等.太阳能级多晶硅切割废料浆的综合回收[J].材料导报, 2011, 25(01):75-79 [4] Tsai T H, Huang J H.Metal removal from silicon sawing waste using the electrokinetic method[J].Journal of the Taiwan Institute of Chemical Engineers, 2009, 40:1-5 [5] Goetzberger A, Hebling C.Photovoltaic materials, past, present, future[J].Solar Energy Materials & Solar Cells, 2000, 62:1-19 [6] Schwinde S, Kunert M.New potential for reduction of kerf loss and wire consumption in multi-wire sawing[J].Solar Energy Materials and Solar Cells, 2015, 136:44-47 [7] Liedke T, Kuna M.A macroscopic mechanical model of the wire sawing process[J].International Journal of Machine Tools and Manufacture, 2011, 51(9):711-720 [8] Sergiienko S A, Pogorelov B V.Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots[J].Separation and Purification Technology, 2014, 133:16-21 [9] Lin Y C, Wang T Y, Lan C W, Tai C Y.Recovery of silicon powder from kerf loss slurry by centrifugation[J].Powder Technology, 2010, 200(3):216-223 [10]黄美玲,熊裕华,等.硅片线锯砂浆中硅粉与碳化硅粉的泡沫浮选分离回收[J].电子元件与材料, 2010, 29(04):74-77 [11] Hsu H P, Huang W P, Yang C F, Lan C W.Silicon recovery from cutting slurry by phase transfer separation[J].Separation and Purification Technology, 2014, 133:1-7 [12] Nguyen A V.New method and equations for determining attachment tenacity and particle size limit in flotation[J].International Journal of Mineral Processing, 2003, 68:167-182 [13] 陈敏恒,丛德滋,等.化工原理[J].第三版,北京,化学工业出版社, 2006, :143-147 [14]程世萌,邓朝俊,等.微液滴制备及其在静止流体中的浮升过程[J].过程工程学报, 2016, 16(03):388-393 [15] 汤传义.水的表面张力与温度的关系[J].安庆师范学院学报(自然科学版), 2000, 01:73-74 [16] 李玉瑛,李冰.影响石油污染物挥发行为的因素[J].生态环境, 2007, 2:327-331 [17]马艳飞,郑西来,冯雪冬,等.油污土壤中柴油去除的影响因素[J].环境工程学报, 2012, 6(07):2417-2421 |
相关文章 2
[1] | 孙超那向明苏志国马光辉王启宝高飞. 相分离-溶胀法制备生物可降解PELA多孔纳米微球[J]. , 2013, 13(4): 662-668. |
[2] | 张新波许莉勇袁俊峰项益智. 溶剂对间二硝基苯催化加氢制间苯二胺反应过程的影响[J]. , 2010, 10(2): 304-308. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3195