安徽工业大学建筑工程学院,安徽 马鞍山 243032
收稿日期:
2017-11-15修回日期:
2018-03-06出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
鲁进利基金资助:
安徽省自然科学基金项目;国家自然科学基金Simulation on convective heat transfer of MPCMS in minichannel heat exchanger based on DPM model
Jinli LU*, Yongjun LÜ, Yafang HAN, Fuping QIANSchool of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243032, China
Received:
2017-11-15Revised:
2018-03-06Online:
2018-10-22Published:
2018-10-12Contact:
LU Jin-li 摘要/Abstract
摘要: 基于离散相模型,采用颗粒比热容随温度变化分段函数描述颗粒的相变过程,模拟了相变微胶囊悬浮液在细小槽道换热器内的对流传热特性,考察了不同入口流量时换热器进出口压差及温差的变化规律,并与纯水进行比较,分析了换热器内部及加热面温度分布,研究了换热器典型通道修正的局部努赛尔数Nux*沿流动方向的变化规律. 结果表明,相变微胶囊悬浮液在换热器内的压损随流量变化规律与纯水一致,较纯水有所增大;引入相变微胶囊颗粒减缓了加热面和流体温度升高的速率,使换热器出口及加热面的温度比纯水低;受进出口位置影响,换热器内温度呈现中间通道低、向两侧逐渐升高的分布规律. 不同通道的Nux*沿流动方向的变化规律存在一定差异,部分通道内相变材料完全融化,而部分通道内相变材料尚未完全融化就流出换热器. 需改进换热器进出口位置或对换热器内部结构进行优化设计以获得较好的流量分配特性,从而改善换热效果.
引用本文
鲁进利 吕勇军 韩亚芳 钱付平. 细小槽道换热器内相变微胶囊悬浮液对流传热DPM模拟[J]. 过程工程学报, 2018, 18(5): 951-956.
Jinli LU Yongjun Lü Yafang HAN Fuping QIAN. Simulation on convective heat transfer of MPCMS in minichannel heat exchanger based on DPM model[J]. Chin. J. Process Eng., 2018, 18(5): 951-956.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217395
http://www.jproeng.com/CN/Y2018/V18/I5/951
参考文献
[1]Ho C J, Jou B T, Lai C M.Thermal and electrical performance of a PV module integrated with double layers of water-saturated MEPCM[J].Applied Thermal Engineering, 2017, 123: 1120-1133 [2]Jamekhorshid A, Sadrameli S M, Barzin R, et al.Composite of Wood-Plastic and Micro-Encapsulated Phase Change Material (MEPCM) Used for Thermal Energy Storage[J].Applied Thermal Engineering, 2016, 112:82-88 [3]Goel M, Roy S K, Sengupta S.Laminar Forced Convection Heat Transfer in Microencapsulated Phase Change Material Suspensions[J].International Journal of Heat & Mass Transfer, 1994, 37(4):593-604 [4]Horibe A, Inaba H.Melting Heat Transfer Characteristics of Microencapsulated Phase Change Material Slurries With Plural Microcapsules Having Different Diameters[J].Journal of Heat Transfer, 2004, 126(4):558-565 [5]钟小龙.相变微肢囊悬浮液在微小通道内传热特性的实验研究[D]. 西南科技大学, 2016. [6]Ho C J, Chen W C, Yan W M.Correlations of heat transfer effectiveness in a minichannel heat sink with water-based suspensions of Al2O3,nanoparticles andor MEPCM particles[J].International Journal of Heat & Mass Transfer, 2014, 69(1):293-299 [7]Rao Yu, Dammel F, Stephan P, et al.Flow frictional characteristics of microencapsulated phase change material suspensions flowing through rectangular minichannels[J].Science in China Series E: Technological Sciences, 2006, 49(4):445-456 [8]Dammel F, Stephan P.Heat Transfer To Suspensions Of Microencapsulated Phase Change Material Flowing Through Minichannels[C]. International Heat Transfer Conference. 2012: 162-168. [9]Wang Y, Chen Z, Ling X.An experimental study of the latent functionally thermal fluid with micro-encapsulated phase change material particles flowing in microchannels[J].Applied Thermal Engineering, 2016, 105:209-216 [10]Nomura T, Sheng N, Zhu C, et al.Microencapsulated phase change materials with high heat capacity and high cyclic durability for high-temperature thermal energy storage and transportation[J].Applied Energy, 2017, 188:9-18 [11]Zhang L D, Chen X, Wu Y T, et al.Effect of nanoparticle dispersion on enhancing the specific heat capacity of quaternary nitrate for solar thermal energy storage application[J].Solar Energy Materials & Solar Cells, 2016, 157:808-813 [12]鲁进利, 张汪林, 韩亚芳, 钱付平.细小圆管内Micro-PCMS紊流对流传热特性的CFD-DPM模拟[J].过程工程学报, 2015, 15(5):758-763 [13]Sarier N, Onder E.The manufacture of microencapsulated phase change materials suitable for the design of thermally enhanced fabrics[J].Thermochimica Acta, 2007, 452(2):149-160 [14]岑可法, 樊建人.工程气固多相流动的理论及计算[M]. 浙江大学出版社, 1990. [15]Ma Z W, Zhang P.Modeling the heat transfer characteristics of flow melting of phase change material slurries in the circular tubes[J].International Journal of Heat & Mass Transfer, 2013, 64(64):874-881 [16]Far B R, Mohammadian S K, Khanna S K, et al.Effects of pin tip-clearance on the performance of an enhanced microchannel heat sink with oblique fins and phase change material slurry[J].International Journal of Heat & Mass Transfer, 2015, 83:136-145 [17]鲁进利,郝英立.细小尺度下潜热型功能热流体压降与传热特性[J].化工学报, 2010, 61(6):1385-1392 [18]胡先旭, 张寅平.等壁温条件下潜热型功能热流体换热强化机理的理论研究[J].太阳能学报, 2002, 23(5):626-633 [19]Ho C J, Chen W C, Yan W M.Experimental study on cooling performance of minichannel heat sink using water-based MEPCM particles[J].International Communications in Heat & Mass Transfer, 2013, 48(11):67-72 [20]He M, Qiu Z Z, Zhang P.Heat transfer characteristics of MEPCMS in turbulent flow: a review[J].Advanced Materials Research, 2014, 961:316-321 |
相关文章 14
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 鲁进利 吴丽 韩亚芳 李洋. 氧化石墨烯改性的正十二烷醇相变微胶囊的制备及性能测试[J]. 过程工程学报, 2021, 21(2): 202-209. |
[3] | 李雅侠 张元 张静 寇丽萍 龚斌 吴剑华. 射流强化螺旋通道内流体流动与换热的数值模拟[J]. 过程工程学报, 2020, 20(8): 896-903. |
[4] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[5] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[6] | 鲁进利 李洋 韩亚芳 钱付平. 丙烯酸树脂-正十二烷醇相变微胶囊制备及性能表征[J]. 过程工程学报, 2019, 19(3): 617-622. |
[7] | 司祥华 胡柏松 张少峰 王德武 余伟明. 纳米管表面和自润湿溶液相耦合的传热性能[J]. 过程工程学报, 2019, 19(1): 73-82. |
[8] | 董新宇 毕勤成 桂淼. 钛合金螺旋扭曲管内强迫对流实验分析[J]. 过程工程学报, 2018, 18(2): 274-279. |
[9] | 张静 张艳秋 吴剑华. 螺距和搭接对螺旋半管夹套强化传热的影响[J]. 过程工程学报, 2017, 17(4): 697-703. |
[10] | 彭德其谭卓伟张浪吴淑英刘阳. 换热器换热管内插螺旋流态化传热及除防垢的影响因素[J]. 过程工程学报, 2015, 15(6): 935-939. |
[11] | 鲁进利张汪林韩亚芳钱付平. 细小圆管内Micro-PCMS紊流对流传热特性的CFD-DPM模拟[J]. 过程工程学报, 2015, 15(5): 758-763. |
[12] | 彭德其张浪俞天兰吴淑英支校衡陈前. 管内螺旋液固两相流的流动行为及传热[J]. , 2015, 15(1): 45-49. |
[13] | 倪冰倪冰狄瞻霞邹宗树. 吹氩板坯连铸结晶器内夹杂物去除的数值模拟[J]. , 2010, 10(1): 35-40. |
[14] | 马学虎;宋天一;兰忠;周兴东. 分割表面对蒸汽滴状冷凝传热特性的影响[J]. , 2007, 7(3): 472-475. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3143