1. 华南理工大学化学与化工学院,广东 广州 510640 2. 广东省粤电集团有限公司安全监察及生产技术部,广东 广州 510630
收稿日期:
2017-12-15修回日期:
2018-04-08出版日期:
2018-12-22发布日期:
2018-12-19通讯作者:
夏启斌基金资助:
广东省科技计划项目(公益研究与能力建设)Adsorption of vanadium ion in solution on nano zero-valent irons
Changduo ZHAO1, Xiaobo YANG1, Meiling FAN1, Wenbin HU2, Qibin XIA1*1. South China University of Technology, Guangzhou, Guangdong 510640, China 2. Safety Supervision and Production Technology of Guangdong Yudean Group Co., Ltd., Guangzhou, Guangdong 510630, China
Received:
2017-12-15Revised:
2018-04-08Online:
2018-12-22Published:
2018-12-19摘要/Abstract
摘要: 采用液相还原法制备纳米零价铁(nZVI),采用PXRD, SEM, TEM, BET(N2吸脱附)和XPS等表征材料性能,考察了纳米零价铁用量、初始钒(V)浓度和初始pH对纳米零价铁吸附钒(V)性能的影响,测定了纳米零价铁对钒(V)的吸附等温线和吸附动力学曲线. 结果表明,制备的纳米零价铁具有典型的核?壳结构,粒径为10~30 nm,BET比表面积为53 m2/g. 纳米零价铁对钒(V)的吸附容量随纳米零价铁用量和初始pH增大而减小. 25℃时的平衡吸附容量为227.8 mg/g. Langmuir等温线方程可很好拟合纳米零价铁对钒(V)的吸附,纳米零价铁对钒(V)的吸附动力学曲线符合准二级动力学模型.
引用本文
赵长多 范美玲 杨晓博 胡文斌 夏启斌. 纳米零价铁对水溶液中钒离子的吸附性能[J]. 过程工程学报, 2018, 18(6): 1253-1260.
Changduo ZHAO Xiaobo YANG Meiling FAN Wenbin HU Qibin XIA. Adsorption of vanadium ion in solution on nano zero-valent irons[J]. Chin. J. Process Eng., 2018, 18(6): 1253-1260.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217434
http://www.jproeng.com/CN/Y2018/V18/I6/1253
参考文献
[1] Khodayari R, Odenbrand C U I. Regeneration of commercial TiO2-V2O5-WO3 SCR catalysts used in bio fuel plants [J]. Environmental, 2001, 30: 87-99. [2] 段竞芳, 史伟伟, 夏启斌, 等. 失活钒钛基SCR催化剂性能表征及其再生[J]. 功能材料. 2012(16):2191-5.Duan J F ,Shi W W, Xia Q B , et, al. Characterization and regeneration of deactivated commercial SCR catalyst. [J]. Journal of Functional Materials. 2012(16):2191-5. [3] Amiridis M.D, Duevel R.V., Wachs I.E. The effect of metal oxide additives on the activity of V2O5/TiO2 catalysts for the selective catalytic reduction of nitric oxide by ammonia[J]. Appl Catal B-Environ, 1999, 20(2): 11-22. [4] Finocchio E, Baldi M, Busca G, Pistarino C, Romezzano G, Bregani F, et al. A study of the abatement of VOC over V2O5-WO3-TiO2 and alternative SCR catalyst [J]. Catalysis Today, 2000, 59(3): 261-268. [5] 曾瑞. 有关我国SCR废催化剂回收产业的思考[J] .中国环保产业.2013(04): 55-61.Zeng R. Consideration on Reclaiming Industry of SCR Waste Catalyzer in China[J]. China Environmental Protection Industry.2013(04): 55-61. [6] Choung J.W., Nam I.S., Ham S.W. Effect of promoters including tungsten and barium on the thermal stability of V2O5/sulfated TiO2 catalyst for NO reduction by NH3[J]. Catalysis Today, 2006,111(3-4): 242-247. [7] 中国环境保护产业协会脱硫脱硝委员会,北京. 脱硫脱硝行业2015年发展综述[J]. 中国环保产业, 2017(1):6-21.Desulfurization and Denitration Committee of CAEPI, Beijing. Development Report on Desulfurization and Denitration Industries in 2015[J]. China Environmental Protection Industry,2017(1):6-21. [8] Zeng L, Cheng C.Y.. A literature review of the recovery of molybdenum and vanadium from spent hydrodesulphurisation catalysts[J]. Hydrometallurgy, 2009, 98(1-2): 1-20. [9] 张琛, 刘建华, 杨晓博. 超声强化废SCR催化剂浸出V和W的研究[J]. 功能材料, 2015, 20(46): 20063-20067.Zhang C, Liu J H Yang X B .Ultrasound assited enhancement in vanadium and tungsten leaching from waste SCR catalyst[J]. Journal of Functional Materials,2015, 20(46): 20063-20067. [10] 朱跃, 何胜, 张扬. 从废烟气脱硝催化剂中回收金属氧化物的方法, CN 101921916 A[P]. 2010.Zhu Y, He S, Zhang Y. Method for recovering metal oxide from waste flue gas denitrification catalyst, CN 101921916 A[P]. 2010. [11] 霍怡廷, 常志东, 董彬, 等. 一种SCR废烟气脱硝催化剂的回收方法,CN 103526031 A [P].2014.Huo Y T, Chang Z D, Dong B, et, al. Method for recovering spend SCR catalyst, CN 103526031 A [P].2014. [12] 刘清雅,刘振宇,李启超. 一种从废弃钒钨钛基催化剂中回收钒、钨和钛的方法, CN 103484678 A [P].2014.Liu Q Y, Liu Z Y, Li Q C. Method for recovering V, W andTi from spent V W-Ti-based catalyst, CN 103484678 A [P].2014 [13] 宋阜, 朱宾权. 离子交换法分离富集钨酸钠溶液中的钒[J]. 稀有金属与硬质合金, 2006, 34(03): 5-11.Song F, Zhu B Q. Extraction of Vanadium from Sodium Tungstats by Ion Exchange[J]. Rare Metals and Cemented Carbides, 2006, 34(03): 5-11. [14] Nguyen T H, Man S L. Recovery of molybdenum and vanadium with high purity from sulfuric acid leach solution of spent hydrodesulfurization catalysts by ion exchange[J]. Hydrometallurgy, 2014, 147-148(8):142-147. [15] Nguyen T H, Man S L. Separation of Vanadium and Tungsten from Sodium Molybdate Solution by Solvent Extraction[J]. Ind.eng.chem.res, 2014, 53(20):8608-8614. [16] Neková? P, Schr?tterová D. Extraction of V(V), Mo(VI) and W(VI) polynuclear species by primene JMT[J]. Chemical Engineering Journal, 2000, 79(3):229-233. [17] 刘梦, 王华静, 王鲲鹏, 等. 腐植酸对水体中五价钒的吸附[J]. 农业环境科学学报, 2016, 35 (5): 969-975.Liu M, Wang H J, Wang K P, et al. Adsorption of pentavalent vanadium by humic acid in water[J]. Journal of Agro-Environment Science,2016, 35(5): 969-975. [18] Luo L, Miyazaki T, Shibayama A, et al. A novel process for recovery of tungsten and vanadium from a leach solution of tungsten alloy scrap[J]. Minerals Engineering, 2003, 16(7):665-670. [19] 阳亚玲, 颜文斌, 高峰. 离子交换树脂分离钒渣浸出液中钒与铬[J]. 过程工程学报, 2017, 17(01):84-91.Yang Y L, Yan W B, Gao F. Separation of V2O5 and Cr(VI) from Vanadium Slag Leaching Solution by Ion Exchange Resin[J]. The Chinese Journal of Process Engineering, 2017, 17(01):84-91. [20] Zhang L, Liu X, Xia W, et al. Preparation and characterization of chitosan-zirconium(IV) composite for adsorption of vanadium(V).[J]. International Journal of Biological Macromolecules, 2014, 64(2):155-161. [21] Crane R A, Scott T B. Nanoscale zero-valent iron: future prospects for an emerging water treatment technology[J]. Journal of Hazardous Materials, 2012, s 211–212(211-212):112-125. [22] Liu, T., Z. Wang and Y. Sun, Manipulating the morphology of nanoscale zero-valent iron on pumice for removal of heavy metals from wastewater. Chemical Engineering Journal, 2015. 263: p. 55-61. [23] Habish, A.J., et al., Nanoscale zerovalent iron (nZVI) supported by natural and acid-activated sepiolites: the effect of the nZVI/support ratio on the composite properties and Cd2+ adsorption. Environmental Science and Pollution Research, 2017. 24(1): p. 628-643. [24] Qian, L., et al., Nanoscale zero-valent iron supported by biochars produced at different temperatures: Synthesis mechanism and effect on Cr(VI) removal. Environmental Pollution, 2017. 223: p. 153-160. [25] Petala, E., et al., Nanoscale zero-valent iron supported on mesoporous silica: Characterization and reactivity for Cr(VI) removal from aqueous solution. Journal of Hazardous Materials, 2013. 261: p. 295-306. [26] Shi, L., X. Zhang and Z. Chen, Removal of Chromium (VI) from wastewater using bentonite-supported nanoscale zero-valent iron. Water Research, 2011. 45(2): p. 886-892. [27] Liu, T., et al., Removal of mercury (II) and chromium (VI) from wastewater using a new and effective composite: Pumice-supported nanoscale zero-valent iron. Chemical Engineering Journal, 2014. 245: p. 34-40. [28] Chen, W., et al., Recovery of indium ions by nanoscale zero-valent iron. Journal of Nanoparticle Research, 2017. 19(3). [29] Petala E, Dimos K, Douvalis A, et al. Nanoscale zero-valent iron supported on mesoporous silica: characterization and reactivity for Cr(VI) removal from aqueous solution[J]. Journal of Hazardous Materials, 2013, 261(13):295-306. [30] Liu A, Liu J, Han J, et al. Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides[J]. Journal of Hazardous Materials, 2017, 322(Pt A):129. [31] Azizian S. Kinetic models of sorption: a theoretical analysis[J]. Journal of Colloid & Interface Science, 2004, 276(1):47. [32] Boparai H K, Joseph M, O'Carroll D M. Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles.[J]. Journal of Hazardou s Materials, 2011, 186(1):458-65. [33] Sun Y.P., Li X.Q., Cao J.S., et al. Characterization of zero-valent iron nanoparticles[J]. Advances in Colloid and Interface Science, 2006, 120(1): 47-56. [34] Li S, Wang W, Liang F, et al. Heavy metal removal using nanoscale zero-valent iron (nZVI): Theory and application.[J]. Journal of Hazardous Materials, 2016, 322:163-171. [35] Peacock C L, Sherman D M. Vanadium(V) adsorption onto goethite (α-FeOOH) at pH 1.5 to 12: a surface complexation model based on ab initio molecular geometries and EXAFS spectroscopy[J]. Geochimica Et Cosmochimica Acta, 2004, 68(8):1723-1733. |
相关文章 15
[1] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[2] | 张梦秋 靳惠娟 巩方玲 张佑红 韦祎 何玉先 马光辉. 两亲性脂肽纳米混悬液冻干粉的制备及其表征[J]. 过程工程学报, 2021, 21(4): 463-470. |
[3] | 孙晨阳 侯超峰 葛蔚. LJ势氩系统分子动力学模拟中截断半径的选择[J]. 过程工程学报, 2021, 21(3): 259-264. |
[4] | 宋春光 张红玲 董玉明 裴丽丽 刘宏辉 江军生 徐红彬. 石煤钒矿酸浸尾渣高温焙烧制备陶粒过程元素硫释放规律[J]. 过程工程学报, 2021, 21(2): 167-173. |
[5] | 刘剑 黄依倪 陈曦 易正戟. 甲基橙在Fe0-NaA-SSFSF固定床上的催化湿式H2O2氧化[J]. 过程工程学报, 2021, 21(2): 193-201. |
[6] | 马艳艳 李正军 张松平 陈卫 任瑛. HBc-VLP的分子动力学模拟和结合自由能计算[J]. 过程工程学报, 2021, 21(2): 219-229. |
[7] | 郭成 高翔鹏 李明阳 郝军杰 龙红明 赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展[J]. 过程工程学报, 2021, 21(1): 3-17. |
[8] | 陈建军 张军伟 宋乾宁. 离子交换分离L-缬氨酸的传质动力学及动态穿透特征[J]. 过程工程学报, 2021, 21(1): 46-56. |
[9] | 夏紫薇 郑刘根 周春财 魏祥平 董祥林. 安徽临涣矿区烟煤与生活污泥共燃的燃烧特性与动力学特征[J]. 过程工程学报, 2021, 21(1): 108-115. |
[10] | 袁淑霞 张哲锋 樊玉光 张雄. 混空轻烃燃气液相析出成核热力学分析[J]. 过程工程学报, 2021, 21(1): 116-124. |
[11] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[12] | 贾韫翰 丁磊 任培月 李凌 王丹丹. 基于响应曲面法的磁性离子交换树脂去除甲基橙和刚果红的优化[J]. 过程工程学报, 2020, 20(9): 1035-1044. |
[13] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[14] | 王新东 李兰杰 杜浩 赵备备. 亚熔盐高效提钒铬清洁生产技术产业化应用[J]. 过程工程学报, 2020, 20(6): 667-677. |
[15] | 杨帆 温良英 赵岩 徐健 张生富 杨仲卿. TiO2(100)表面C和Cl2吸附反应的第一性原理计算[J]. 过程工程学报, 2020, 20(5): 569-575. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3180