1. 中国科学院过程工程研究所绿色与工程重点实验室,湿法冶金清洁技术国家工程实验室,北京 100190 2. 中国科学院大学化学与化工学院,北京 100049
收稿日期:
2017-12-15修回日期:
2018-07-13出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
曲景奎基金资助:
中国科学院前沿科学重点研究项目;河南省科技开放合作项目;中国科学院科技服务网络计划(STS计划)项目Preparation of high specific surface area Cu(OH)2 nanowires/nanorods by coordinated precipitation
Shuang XU1,2, Jingkui QU1*, Guangye WEI1, Tao QI11. National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, China
Received:
2017-12-15Revised:
2018-07-13Online:
2018-10-22Published:
2018-10-12Contact:
QU Jing-kui 摘要/Abstract
摘要: 以CuSO4?5H2O、氨水和NaOH为原料,采用配位沉淀法制备了不同形貌的Cu(OH)2纳米粉末,考察了NaOH用量、氨水用量和CuSO4初始浓度对颗粒形貌、粒度和比表面积的影响. 结果表明,在CuSO4初始浓度0.1 mol/L、摩尔比NH3:CuSO4=7和NaOH:CuSO4=2~4的条件下,Cu(OH)2由纳米线组装成花簇状,随NaOH用量增加,单头簇状结构减少,双头花簇状结构增多;在CuSO4初始浓度0.1 mol/L、摩尔比NaOH:CuSO4=2和NH3:CuSO4=7的条件下,得到由长径比为20~60的纳米线组成的直径为0.3~1 μm、长1~3 μm的花形簇状Cu(OH)2颗粒,其粒度分布均一,比表面积达83.3 m2/g,表面存在吸附水;在摩尔比NH3:CuSO4=3,NaOH:CuSO4=2的条件下,随CuSO4初始浓度降低,Cu(OH)2纳米线倾向组装成花形簇状结构.
引用本文
徐爽 曲景奎 魏广叶 齐涛. 配位沉淀制备高比表面积氢氧化铜纳米线/纳米棒[J]. 过程工程学报, 2018, 18(5): 1052-1060.
Shuang XU Jingkui QU Guangye WEI Tao QI. Preparation of high specific surface area Cu(OH)2 nanowires/nanorods by coordinated precipitation[J]. Chin. J. Process Eng., 2018, 18(5): 1052-1060.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217426
http://www.jproeng.com/CN/Y2018/V18/I5/1052
参考文献
[1] Oswald H R, Reller A, Schmalle H W, et al.Structure of Copper(II) Hydroxide, Cu(OH)2 [J]. Acta Crystallogr. C 1990, 46: 2279?2284. [2] 白培万, 孙金全, 吴秀春.纳米氢氧化铜可湿性粉剂的合成 [J]. 太原理工大学学报, 2008, (02): 164?166. [3]Bai P W, Sun J Q, Wu X C.Synthesis and Characterization of Nano-copper Hydroxide Wettable Power [J]. Journal of Taiyuan University of Technology, 2008, (02): 164?166. [4] Zhao L J, Ortiz C, Adeleye A S, et al.Metabolomics to Detect Response of Lettuce (Lactuca Sativa) to Cu(OH)2 Nanopesticides: Oxidative Stress Response and Detoxification Mechanisms [J]. Environ. Sci. Technol., 2016, 50: 9697?9707. [5] Gurav K V, Patil U M, Shin S W, et al.Room Temperature Chemical Synthesis of Cu(OH)2 Thin Films for Supercapacitor Application [J]. J. Alloy. Compd., 2013, 573: 27?31. [6] Lei S J, Liu Y, Fei L F, et al.Commercial Dacron Cloth Supported Cu(OH)2 Nanobelt Arrays for Wearable Supercapacitors [J]. J. Mater Chem. A, 2016, 4: 14781?14788. [7] Zhou X S, Luo Z H, Tao P F, et al.Facile Preparation and Enhanced Photocatalytic H2-production Activity of Cu(OH)2 Nanospheres Modified Porous g-C3N4 [J]. Mater. Chem. Phys., 2014, 143: 1462?1468. [8] Shi H X, Zhao Y X, Li N, et al.Synthesis and Photocatalytic Activity of Novel CuO Cauliflowers Grown from Cu(OH)2 [J]. Catal. Commun., 2014, 47: 7?12. [9] Mosaddegh E, Hassankhani A, Karimi-Maleh H.Synthesis and Characterization of ES/Cu(OH)2 Nanocomposite: A Novel and High Effective Catalyst in the Green Synthesis of Pyrano[4, 3-b]pyrans [J]. Mat. Sci. Eng. C-mater., 2015, 46: 264?269. [10] Fujita W, Awaga K.Reversible Structural Transformation and Drastic Magnetic Change in a Copper Hydroxides Intercalation Compound [J]. J. Am. Chem. Soc., 1997, 119: 4563?4564. [11] Fujita W, Awaga K.Intercalation of Stable Organic Radicals into Layered Copper Hydroxides [J]. Synthetic. Met., 2001, 122: 569?572. [12] Luo Y H, Huang J G, Jin J A, et al.Formation of Positively Charged Copper Hydroxide Nanostrands and Their Structural Characterization [J]. Chem. Mater., 2006, 18: 1795?1802. [13] Zhou S H, Feng X, Shi H Y, et al.Direct Growth of Vertically Aligned Arrays of Cu(OH)2 Nanotubes for the Electrochemical Sensing of Glucose [J]. Sensor Actuat. B-chem., 2013, 177: 445?452. [14]王成,刘峰,叶明富,等.纳米氢氧化铜制备研究进展[J].安徽工业大学学报自然科学版, 2015, 32(02):127-132 [15]Wang C, Liu F, Ye F M, et, al.Research Progress in Preparation of Copper Hydroxide Nanomaterials[J].J. of Anhui University of Technology(Natural Science), 2015, 32(02):127-132 [16] Wang W Z, Varghese O K, Ruan C M, et al.Synthesis of CuO and Cu2O Crystalline Nanowires Using Cu(OH)2 Nanowire Templates [J]. J. Mater. Res., 2003, 18: 2756?2759. [17] Lu C H, Qi L M, Yang J H, et al.Simple Template-free Solution Route for the Controlled Synthesis of Cu(OH)2 and CuO Nanostructures [J]. J. Phys. Chem. B, 2004, 108: 17825?17831. [18] Wen X G, Zhang W X, Yang S H.Solution Phase Synthesis of Cu(OH)2 Nanoribbons by Coordination Self-assembly Using Cu2S Nanowires as Precursors [J]. Nano Lett., 2002, 2: 1397?1401. [19] Giannakoudakis D A, Jiang M Y, Bandosz T J.Highly Efficient Air Desulfurization on Self-Assembled Bundles of Copper Hydroxide Nanorods [J]. ACS Appl. Mater. Inter., 2016, 8: 31986?31994. [20] Dashamiri S, Ghaedi M, Asfaram A, et al.Multi-response Optimization of Ultrasound Assisted Competitive Adsorption of Dyes onto Cu(OH)2-nanoparticle Loaded Activated Carbon: Central Composite Design [J]. Ultrason. Sonochem., 2017, 34: 343?353. [21] Lee S, Park S, Jeong H, et al.Effects of Post-annealing Treatment on the Microstructural Evolution and Quality of Cu(OH)2 Nanowires [J]. J. Alloy. Compd., 2015, 652: 153?157. [22] Sun Y Z, Ma L, Zhou B B, et al.Cu(OH)2 and CuO Nanotube Networks from Hexaoxacyclooctadecane-like Posnjakite Microplates. Synthesis and Electrochemical Hydrogen Storage [J]. Int. J. Hydrogen Energ., 2012, 37: 2336?2343. [23] Wen X G, Zhang W X, Yang S H.Synthesis of Cu(OH)2 and CuO Nanoribbon Arrays on a Copper Surface [J]. Langmuir, 2003, 19: 5898?5903. [24] Zhang W X, Wen X G, Yang S H, et al.Single-crystalline Scroll-type Nanotube Arrays of Copper Hydroxide Synthesized at Room Temperature [J]. Adv Mater, 2003, 15: 822?825. [25] Cheng J, Sun Y F, Zhao A, et al.Preparation of Gradient Wettability Surface by Anodization Depositing Copper Hydroxide on Copper Surface [J]. T. Nonferr. Metal Soc., 2015, 25: 2301?2307. [26] Rodriguez-Clemente R, Serna C J, Ocana M, et al.The Relationship of Particle Morphology and Structure of Basic Copper(II) Compounds Obtained by Homogeneous Precipitation [J]. J. Cryst. Growth, 1994, 143: 277?286. [27] Cheng Z P, Chu X Z, Zhong H, et al.Morphology Control of Cu(OH)2 Nanowire Bundles via a Simple Template-free Route [J]. Mater. Lett., 2013, 90: 41?44. [28] Durand-keklikian L, Matijevic E.Needle-type Colloidal Copper(II) Hydroxide Particles [J]. Colloid Polym. Sci., 1990, 268: 1151?1158. [29] Gao P, Zhang M L, Niu Z Y, et al.A facile Solution-chemistry Method for Cu(OH)2 Nanoribbon Arrays with Noticeable Electrochemical Hydrogen Storage Ability at Room Temperature. Chem. Commun., 2007, (48): 5197?5199. [30] Park I Y, Kuroda K, Kato C.Preparation of Complex Copper-aluminum Double Hydroxide Phases from Copper (II) Ammine Complex Solutions [J]. Solid State Ionics, 1990, 42: 197?203. [31] Falk M.The Frequency of The H-O-H Bending Fundamental in Solids and Liquids [J]. Spectrochim. Acta A., 1984, 40: 43?48. [32] Yin A Y, Guo X Y, Dai W L, et al.The Nature of Active Copper Species in Cu-HMS Catalyst for Hydrogenation of Dimethyl Oxalate to Ethylene Glycol: New Insights on the Synergetic Effect between Cu-0 and Cu+ [J]. J. Phys. Chem. C, 2009, 113: 11003?11013. [33] Toupance T, Kermarec M, Lambert J F, et al.Conditions of Formation of Copper Phyllosilicates in Silica-supported Copper Catalysts Prepared by Selective Adsorption [J]. J. Phys. Chem. B, 2002, 106: 2277?2286. [34] Frost R L, Martens W, Kloprogge J T, et al.Raman Spectroscopy of the Basic Copper Chloride Minerals Atacamite and Paratacamite: Implications for the Study of Copper, Brass and Bronze Objects of Archaeological Significance [J]. J. Raman Spectrosc., 2002, 33: 801?806. [35] Ellis T H, Wang H.Isolating the Reaction Steps in the Formation of Methoxy on Cu(100) [J]. Langmuir, 1994, 10: 4083?4088. [36]梅德清,赵翔,王书龙,等.柴油机排放颗粒物的热重特性分析[J].农业工程学报, 2013, 29(16):50-56 [37]Mei D Q, Zhao X, Wang S L, et al.Thermogravimetric Characteristics Analysis of Particulate Matter of Emission of Divided Diesel[J].Transactions of the Chinese Society of Agricultural Engineering, 2013, 29(16):50-56 |
相关文章 15
[1] | 王明星 吴小林 姬忠礼 卢利锋 宋暄. 温度对OPC装置在线检测颗粒物的影响[J]. 过程工程学报, 2020, 20(3): 324-331. |
[2] | 孙江波 张杰 王迪 陆江银 崔彦斌. W18O49/PET-ITO柔性电致变色薄膜制备及其变色性能[J]. 过程工程学报, 2019, 19(2): 400-406. |
[3] | 张浩 徐远迪 刘秀玉. 优化制备粒度均匀分布的Ce-Cu/TiO2空心微球及其光–湿性能[J]. 过程工程学报, 2019, 19(1): 195-201. |
[4] | 潘乾 尚文喻 朱蓉鑫 刘红缨. 石墨烯量子点修饰柔性硅纳米线阵列用于NO2检测[J]. 过程工程学报, 2018, 18(5): 1061-1067. |
[5] | 耿康生 李育敏 陆佳冬 刘鹏真 汪军 计建炳. 化学吸收法测定新型复合转子旋转床气液有效比表面积及液相传质系数[J]. 过程工程学报, 2018, 18(4): 704-709. |
[6] | 谢海云 刘榕鑫 陈禄政 张鹏飞 丁超 高利坤 童雄. 钛磁铁矿的旋流离心连续分级实验[J]. 过程工程学报, 2018, 18(2): 308-311. |
[7] | 刘鹏飞 程路伟 许宝松 李梦醒 韩召. 用激光粒度仪测量燃烧合成的氮化硅粉体粒度的条件[J]. 过程工程学报, 2017, 17(5): 971-975. |
[8] | 李海红 刘雨倩 王宁. 最优炭化工艺下辣椒秸秆基活性炭的制备及表征[J]. 过程工程学报, 2017, 17(5): 1066-1071. |
[9] | 胡琳琳 韦祎 徐玉松 居殿春 马光辉. 两亲性刺突微球的制备及性能表征[J]. 过程工程学报, 2017, 17(4): 821-826. |
[10] | 张浩 宗志芳 刘秀玉 唐刚. 纳米级癸酸-棕榈酸/SiO2相变储湿复合材料的团聚原因及分散方法[J]. 过程工程学报, 2017, 17(3): 584-587. |
[11] | 郝素菊 任倩倩 张玉柱 蒋武锋 郝华强 薄荷 董建君. 石灰的活性度及微观结构研究 [J]. , 2017, 17(1): 151-155. |
[12] | 张浩刘秀玉宗志芳朱庆明杜晓燕林晓飞. 用激光粒度分析仪检测细粒径SiO2基相变调湿复合材料的粒度分布[J]. 过程工程学报, 2016, 16(3): 529-532. |
[13] | 董梅英祁贵生刘有智郭强宋彬王探. 错流旋转填料床传质特性影响因素的实验研究[J]. 过程工程学报, 2015, 15(6): 929-934. |
[14] | 张慧霞王玉霞韦祎阮燕晔马光辉. mPEG-PLGA多孔微球的制备及其对降钙素的吸附行为[J]. , 2013, 13(5): 870-876. |
[15] | 孙德财张聚伟赵义军刘云义余剑许光文. 粉煤气化条件下不同粒径半焦的表征与气化动力学[J]. , 2012, 12(1): 68-74. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3132