1. 北京石油化工学院机械工程学院,北京 102617 2. 中海油研究总院技术研发中心,北京 100027 3. 深水油气管线关键技术与装备北京市重点实验室,北京 102617
收稿日期:
2017-12-07修回日期:
2018-02-24出版日期:
2018-10-22发布日期:
2018-10-12通讯作者:
陈家庆基金资助:
北京市属高等学校“长城****”培养计划资助项目;“十三五”国家科技重大专项子课题“高效原油脱水处理技术研究”Structural design and numerical simulation of axial-swirling type micro-bubble generator
Guodong DING1,3, Jiaqing CHEN1,3*, Chunsheng WANG2, Chao SHANG2, Meili LIU1,3, Xiaolei CAI1,3, Yipeng JI1,31. School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing 102617, China
2. CNOOC Research Center, Beijing 100027, China
3. Beijing Key Laboratory of Pipeline Critical Technology and Equipment for Deep Water Oil & Gas Development, Beijing 102617, China
Received:
2017-12-07Revised:
2018-02-24Online:
2018-10-22Published:
2018-10-12Contact:
CHEN Jia-qing 摘要/Abstract
摘要: 设计了一种旋流式微气泡发生器,由环形注气机构和新型气泡破碎机构两部分组成,前者采用中心圆环+微孔板结构,后者由静止起旋元件和文丘里管组成,采用ANSYS FLUENT软件对新型气泡破碎机构的流道进行数值模拟,并与常规文丘里流道对比. 结果表明,新型气泡破碎机构流道内的水流速度、径向速度梯度、湍动能和湍能耗散率均大于常规文丘里流道,常规文丘里流道出口处产生的微气泡直径为新型气泡破碎机构的2倍. 采用响应曲面法优化静止起旋元件结构,优化后的叶片出口角度为35?,中心圆柱体直径为12.3 mm,叶片长度为10 mm,优化后的气泡破碎机构产生的微气泡直径为优化前的75%.
引用本文
丁国栋 陈家庆 王春升 尚超 刘美丽 蔡小垒 姬宜朋. 轴向旋流式微气泡发生器的结构设计与数值模拟[J]. 过程工程学报, 2018, 18(5): 934-941.
Guodong DING Jiaqing CHEN Chunsheng WANG Chao SHANG Meili LIU Xiaolei CAI Yipeng JI. Structural design and numerical simulation of axial-swirling type micro-bubble generator[J]. Chin. J. Process Eng., 2018, 18(5): 934-941.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.217413
http://www.jproeng.com/CN/Y2018/V18/I5/934
参考文献
[1]Rodríguez-Rodríguez J, Sevilla A, Martínez-Bazán C, et al.Generation of microbubbles with applications to industry and medicine[J].Annual Review of Fluid Mechanics, 2015, 47(1):405-429 [2] Marui T.An introduction to micro/nano-bubbles and their applications[C]//The 14th World Multi-Conference on Systemics, Cybernetics and Informatics. Orlando: International Social Science Council, 2010: 43-48. [3]Terasaka K, Hirbayashi A, Nishino T, et al.Development of microbubble aerator for waste water treatment using aerobic activated sludge[J].Chemical engineering science, 2011, 66(14):3172-3179 [4]Yun J E, Kim J H.Development of Venturi System for Microbubble Generation[J].Transactions of the Korean Society of Mechanical Engineers B, 2014, 38(10):865-871 [5]Meakhail T, Teaima I.Experimental and numerical studies of the effect of area ratio and driving pressure on the performance of water and slurry jet pumps[J].Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2012, 226(9):2250-2266 [6] 唐文偲.气泡发生器结构与性能研究[D]. 哈尔滨: 哈尔滨工程大学, 2014. [7]Tang W S.Study of the structure and performance of bubble generator[D]. Harbin: Harbin Engineering University, 2014 [8]魏月友, 孙姣, 陈文义.基于数值模拟的气泡发生器结构优化研究[J].矿山机械, 2015, 43(6):99-102 [9]Wei Y Y, Sun J, Chen W Y.Study on structural optimization of bubble generator based on numerical simulation[J].Mining Machine, 2015, 43(6):99-102 [10]Tabei K, Haruyama S, Yamaguchi S, et al.Study of micro bubble generation by a swirl jet[J].Journal of Environment and Engineering, 2007, 2(1):172-182 [11]谷脇充浩, 本田真一, 上田健士, 等.対向した 台の旋回式マイクロバブル発生装置の干渉[J].日本流体力学会誌, 2008, 27(2):133-141 [12]Hiroyuki T, Shinichi H, Kenji U, et al.Interference of two opposing swinging microbubble generators[J].Journal of the Japan Fluid Mechanics Association, 2008, 27(2):133-141 [13]Sato K.Recent patents on micro-and nano-bubble applications and potential application of a swirl-type generator[J].Recent Patents on Mechanical Engineering, 2011, 4(3):202-211 [14] Ohnari H.Swirling fine-bubble generator: US6382601[P]. 2002-05-07. [15] Ohnari H.Swing type fine air bubble generating device: US7261283[P]. 2007-08-28. [16] 岛田晴示, 浅里信之, 森崎亘.微气泡发生装置: CN104039432A[P]. 2012-12-21. [17]Shimada C, Nobuyuki A, Watari M.Micro-bubble generating device: CN104039432A[P]. 2012-12-21. [18] 嵯峨秀一, 浅里信之.一种微气泡发生装置及回旋流发生装置: CN104023833B[P]. 2012-12-21. [19]Shuichi S, Nobuyuki A.A microbubble generating apparatus and a swirling flow generating apparatus: CN104023833B[P]. 2012-12-21. [20] Abe H, Matsuuchi K, Idaka M.Micro-bubble generator, vortex breakdown nozzle for micro-bubble generator, vane swirler for micro-bubble generator, micro-bubble generating method, and micro-bubble applying device: US7997563[P]. 2011-08-16. [21]Kogawa H, Naoe T, Kyotoh H, et al.Development of microbubble generator for suppression of pressure waves in mercury target of spallation source[J].Journal of Nuclear Science and Technology, 2015, 52(12):1461-1469 [22]杨涛, 李浙昆, 张永忍, 等.旋流式微泡发生器的设计与试验研究[J].水利水电技术, 2016, 47(5):141-144 [23]Yang T, Li Z K, Zhang Y R, et al.Design and experimental study of swirling microbubble generator[J].Water Resources and Hydropower Engineering, 2016, 47(5):141-144 [24] 邓久帅, 李浙昆, 何伟, 等.一种旋流式微气泡发生器及生成微泡的方法: CN104117299A[P]. 2014-10-29. [25]Deng J S, Li Z K, He W, et al.A swirling microbubble generator and a method for generating microbubbles: CN104117299A[P]. 2014-10-29. [26] 邢新会, 吕奉祥, 初里冰, 等.一种微米气泡的发生装置及其专用旋流器: CN101565230A[P]. 2008-04-24. [27]Xing X H, Lv F X, Chu L B, et al.A micro-bubble generation device and its special cyclone: CN101565230A[P]. 2008-04-24. [28] 章成武, 郝海保, 张瑞革, 等.一种石油水处理用气浮选微气泡加气装置及其使用方法: CN106277150A[P]. 2016-09-07. [29]Zhang C W, He H B, Zhang D G, et al.An air flotation micro-bubble aeration device for petroleum water treatment and its using method: CN106277150A[P]. 2016-09-07. [30] 张永忍.自吸式旋流微泡发生器的试验与研究[D]. 昆明: 昆明理工大学, 2015. [31]Zhang Y R.Experiment and research on self-priming swirling bubble generators[D]. Kunming: Kunming University of Science and Technology, 2015. [32] Li Z K, Shi W L, He W, et al.Computer Simulation Method for the Bubbling Performance of the Vortex Micro-bubble Generator[C]// International Conference on Electro mechanical Control Technology and Transportation. France: Atlantis Press, 2015: 250-253. [33]吕奉祥, 初里冰, 周军, 等.新型微米曝气设备的研制及其性能[J].化工学报, 2011, 62(6):1537-1542 [34]Lv F X, Chu L B, Zhou J, et al.Development and performance of a new type of micro aeration equipment[J].CIESC Journal, 2011, 62(6):1537-1542 [35] Yin J, Li J, Li H, et al.Experimental study on the bubble generation characteristics for an venturi type bubble generator[J]. International Journal of Heat and Mass Transfer, 2015, 91: 218-224. [36]马亚鹏, 李浙昆.内腔直径对自吸式旋流微泡发生器内流场的影响[J].机械制造, 2016, 54(11):27-28 [37]Ma Y P, Li Z K.Effect of cavity diameter on flow field in self-sucking swirling bubble generators[J].Machine made, 2016, 54(11):27-28 [38] Rabe K, Hardli L.Flotation unit for purifying water, such as a CFU (compact flotation unit): US9284199[P]. 2016-03-15. [39]Ghanem A, Lemenand T, Della V D, et al.Static mixers: Mechanisms,applications,and characterization methods–A review[J].Chemical Engineering Research and Design, 2014, 92(2):205-228 [40]Paglianti A.Recent innovations in turbulent mixing with static elements[J].Recent Patents on Chemical Engineering, 2008, 1(1):80-87 [41]Casidy J J, Falvey H T.Observations of unsteady flow arising after vortex breakdown[J].Journal of Fluid Mechanics, 1970, 41(4):727-736 [42]Spall R E, Gatski T B, Grosch C E.A criterion for vortex breakdown[J].Physics of Fluids, 1987, 30(11):3434-3440 [43]Hiroyuki K, Takashi N, Harumichi K, et al.Development of micro-bubble generator for suppression of pressure waves in mercury target of spallation source[J].Journal of Nuclear Science & Technology, 2015, 52(12):1-9 [44]金有海, 范超.导叶式旋风管叶片参数设计方法的研究[J].化工机械, 1999, 26(1):21-24 [45]Jin Y H, Fan C.Research on the parameter design method of the guide blade cyclone[J].Chemical machinery, 1999, 26(1):21-24 [46] 雷秉秉.轴流导叶式旋流分离器的数值模拟与实验性能研究[D]. 北京: 北京交通大学, 2017. [47]Lei B B.Numerical simulation and experimental research on axial guide vane cyclone[D]. Beijing: Beijing Jiaotong University, 2017. [48] Fujiwara A, Takagi S, Matsumoto Y.Bubble breakup phenomena in a venturi tube[C]// Asme/jsme 2007, Joint Fluids Engineering Conference. 2007: 553-560. [49] Gabbard C H.Development of a Venturi Type Bubble Generator for Use in the Molten-Salt Reactor Xenon Removal System[D]. Oak Ridge: Oak Ridge National Laboratory, 1972. [50] Kress T S.Mass Transfer Between Small Bubbles and Liquids in Cocurrent Turbulent Pipe Flow[D]. Tennessee: University of Tennessee, 1972. [51]Lasheras J, Martinezbzan C, Montanes J.On the breakup of an air bubble injected into a fully developed turbulent flowI-Breakup frequency[J].Journal of Fluid Mechanics, 2013, 401(401):157-182 |
相关文章 15
[1] | 何星晨 王娟 张佳 万加亿 王江云 毛羽. 多组扭曲片排布方式对乙烯裂解炉管内产物收率的影响[J]. 过程工程学报, 2021, 21(4): 401-409. |
[2] | 周小宾 彭世恒 刘勇 王多刚. 废钢对转炉熔池流体流动影响研究[J]. 过程工程学报, 2021, 21(4): 410-419. |
[3] | 郭栋 梁海峰. 气液混合式撞击流反应器流场特性数值模拟[J]. 过程工程学报, 2021, 21(3): 277-285. |
[4] | 王珂 张引弟 王城景 辛玥. CH4掺混H2的燃烧数值模拟及掺混比合理性分析[J]. 过程工程学报, 2021, 21(2): 240-250. |
[5] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[6] | 杨会 朱辉 陈永平 付海明. 滑移效应下纤维绕流场及过滤阻力的数值计算与分析[J]. 过程工程学报, 2021, 21(1): 36-45. |
[7] | 岳高伟 万重重 王路 李彦兵. 玻璃钢化淬冷降温特征及影响因素[J]. 过程工程学报, 2020, 20(8): 947-958. |
[8] | 王志敏 谢峻林 梅书霞 何峰 金明芳. 浮法玻璃熔窑火焰空间石油焦部分替代重油燃烧的数值模拟[J]. 过程工程学报, 2020, 20(6): 737-744. |
[9] | 王娟 何星晨 李军 万加亿 邹槊 徐皓晗. 开口扭曲片圆管强化传热与流动阻力特性模拟[J]. 过程工程学报, 2020, 20(5): 510-520. |
[10] | 王志奇 邹玉洁 刘柏希 张振康. 热风循环隧道烘箱的流场模拟及结构优化[J]. 过程工程学报, 2020, 20(5): 531-539. |
[11] | 郝思佳 范怡平 汪泉宇 赵亚飞. 气液逆流接触洗涤器两相洗涤效果和流动特性[J]. 过程工程学报, 2020, 20(4): 390-399. |
[12] | 李希铭 牛胜利 曲同鑫 韩奎华 路春美 王永征. 基于颗粒动力学理论的搅拌器中固液流动的数值模拟[J]. 过程工程学报, 2020, 20(3): 265-275. |
[13] | 张宇 田丽亭 岳小棚 王坤. 槽式太阳能集热管内相变微胶囊悬浮液的热力性能分析[J]. 过程工程学报, 2020, 20(3): 276-284. |
[14] | 王娟 李军 高助威 何星晨 邹槊 万加亿. 热风混合器内部流场的数值模拟与结构改进[J]. 过程工程学报, 2020, 20(2): 148-157. |
[15] | 吴仲达 游永华 王盛 张壮 周思凯 戴方钦 易正明. 扩缩方孔蜂窝蓄热体强化传热的数值模拟[J]. 过程工程学报, 2020, 20(12): 1416-1423. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3141