安徽工业大学材料科学与工程学院,安徽 马鞍山 243032
收稿日期:
2018-03-06修回日期:
2018-07-11出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
吕耀辉基金资助:
安徽省教育厅自然科学研究重点项目;安徽省教育厅自然科学研究重点项目Recent advance on the 2D Ti3C2Tx MXene materials in supercapacitor field
Xun ZHANG, Pei LI, Zhengde WANG, Xianpeng WANG, Wei ZHANG, Jie TAN, Yaohui LÜ*School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan, Anhui 243032, China
Received:
2018-03-06Revised:
2018-07-11Online:
2019-02-22Published:
2019-02-12摘要/Abstract
摘要: 近年来二维过渡金属碳/氮化物(MXene)材料由于其独特的物理/化学性能,在储能领域引起广泛的关注。其中以二维Ti3C2Tx材料的研究最为普遍。MAX相是一类三元氮化物和/或碳化物,其化学式为Mn+1AXn (n=1~3),M代表过渡金属元素(如Sc, Ti, Zr, Hf, V, Nb, Ta, Cr, Mo等),X是碳和/或氮,A主要是IIIA或IVA族元素。根据n不同,MAX相的晶体结构包括3种类型。MAX相中,M?X和M?A键强度都很高。无法通过剪切或其它机械方法分层剥离。由于M?A键比M?X键具有更高的化学活性,可以通过化学刻蚀M?A键并辅助剥离方法获得单层/少层的MXenes材料。表面基团随机分布,对电化学性能有重要的影响。调控表面基团的种类和数量是当前研究的重要内容。本工作介绍了MXene相的基本结构,分析了相结构与性能的关系。总结了通过离子插入、热处理、表面改性、电极设计和元素掺杂等手段改善MXene相材料电化学性能的研究进展,简要介绍了MXenes与碳材料、氧化物、聚合物复合在超级电容器领域中的应用进展。对MXene相材料的结构、制备及电化学性能等方面进行了综述,指出了MXene相材料用于超级电容器领域存在的主要问题及未来的发展方向。
引用本文
张洵 李培 王政德 王先鹏 张伟 檀杰 吕耀辉. 超级电容器用二维Ti3C2Tx过渡金属碳/氮化物材料的研究进展[J]. 过程工程学报, 2019, 19(1): 35-44.
Xun ZHANG Pei LI Zhengde WANG Xianpeng WANG Wei ZHANG Jie TAN Yaohui Lü. Recent advance on the 2D Ti3C2Tx MXene materials in supercapacitor field[J]. Chin. J. Process Eng., 2019, 19(1): 35-44.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218142
http://www.jproeng.com/CN/Y2019/V19/I1/35
参考文献
[1]Zhang H.Ultrathin Two-Dimensional Nanomaterials[J].ACS Nano, 2015, 9(10):9451-9469 [2] Naguib M, Kurtoglu M, Presser V, et al.Two-Dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2 [J]. [J].Adv. Mater., 2011, 23:4248-4253 [3]Anasori B, Lukatskaya M R, Gogotsi Y.D Metal Carbides and Nitrides(MXenes) for Energy Storage[J].Nat. Rev. Mater., 2017, 2(2):16098- [4]Naguib M, Mochalin V N, Barsoum M W, et al.th Anniversary Article: MXenes: a New Family of Two-Dimensional Materials[J].Adv.Mater., 2014, 26(7):992-1005 [5]Tang Q, Zhou Z, Shen P.Are MXenes Promising Anode Materials for Li Ion Batteries?[J].J. Am. Chem. Soc., 2012, 134(40):16909- [6]Wang H W, Naguib M, PageK, et al.Resolving the Structure of Ti3C2Tx MXenes through Multilevel Structural Modeling of the Atomic Pair Distribution Function[J].Chem.Mater., 2015, 28(1):349-359 [7]Hope M A, Forse A C, Griffith K J, et al.NMR Reveals the Surface Functionalization of Ti3C2 MXene[J].Phys. Chem. Chem. Phys., 2016, 18(7):5099-5102 [8]Urbankowski P, Anasori B, Makaryan T, et al.Synthesis of Two-Dimensional Titanium Nitride Ti4N3(MXene)[J].Nanoscale, 2016, 8(22):11385-11391 [9]Hoffman E N, Yushin G, El-Raghy T, et al.Micro and Mesoporosity of Carbon Derived from Ternary and Binary Metal Carbides[J].Micropor. Mesopor. Mat., 2008, 112(1):526-532 [10]Presser V, Heon M, Gogotsi Y.Carbide-Derived Carbons-From Porous Networks to Nanotubes and Graphene[J].Adv. Funct. Mater., 2015, 21(5):810-833 [11]Barsoum M W, Elraghy T, Farber L, et al.The Topotactic Transformation of Ti3SiC2 into a Partially Ordered Cubic Ti(C067Si0.06) Phase by the Diffusion of Si into Molten Cryolite[J].J. Electrochem. Soc., 1999, 146(10):3919-3923 [12]El-Raghy T, Barsoum M W, Sika M.Reaction of Al with Ti3SiC2 in the 800-1000°C Temperature Range[J].Mater. Sci. Eng. A, 2001, 298(1-2):174-178 [13]Barsoum M W, Golczewski J, Seifert H J, et al.Fabrication and Electrical and Thermal Properties of Ti2InC,Hf2InC and (Ti,Hf)2InC[J].J. Alloys Compd., 2002, 33(52):173-179 [14]Xu C, Wang L, Liu Z, et al.Large-Area High-Quality 2D Ultrathin Mo2C Superconducting Crystals[J].Nat. Mater., 2015, 14(11):1135-1141 [15]Naguib M, Mashtalir O, Carle J, et al.Two-Dimensional Transition Metal Carbides[J].ACS Nano, 2012, 6(2):1322-1331 [16]Alhabeb M, Maleski K, Anasori B, et al.Guidelines for Synthesis and Processing of Two-Dimensional Titanium Carbide(Ti3C2TxMXene)[J].Chem. Mater., 2017, 29(1):7633-7644 [17]Ghidiu M, Lukatskaya M R, Zhao M Q, et al.Conductive Two-Dimensional Titanium Carbide ‘Clay’ with High Volumetric Capacitance[J].Nature, 2014, 516(7529):78- [18]Lipatov A, Alhabeb M, Lukatskaya M R, et al.MXene Materials: Effect of Synthesis on Quality,Electronic Properties and Environmental Stability of Individual Monolayer Ti3C2 MXene Flakes[J].Adv. Electron. Mater., 2016, 2(12):1600255- [19]Shahzad F, Alhabeb M, Hatter C B, et al.Electromagnetic Interference Shielding with 2D Transition Metal Carbides(MXenes)[J].Science, 2016, 353(6304):1137-1140 [20]Khazaei M, Arai M, Chung C Y, et al.Novel Electronic andMagnetic Properties of Two-Dimensional Transition Metal Carbides and Nitrides[J].Adv. Funct. Mater., 2013, 23(17):2185-2192 [21]Khazaei M, Ranjbar A, Ghorbaniasl M, et al.Nearly Free Electron States in MXenes[J].Phys. Rev. B, 2016, 93(20):205125- [22]Mashtalir O, Naguib M, Mochalin V N, et al.Intercalation and Delamination of Layered Carbides and Carbonitrides [J] Nat[J].Commun., 2013, 4(2):1716- [23]Mashtalir O, Lukatskaya M R, Zhao M Q, et al.Amine-Assisted Delamination of Nb2C MXene for Li-ion Energy Storage Devices[J].Adv. Mater., 2015, 27(23):3501- [24]Naguib M, Mashtalir O, Lukatskkaya M R, et al.One-Step Synthesis of Nanocrystalline Transition Metal Oxides on Thin Sheets of Disordered Graphitic Carbon by Oxidation of MXenes[J].Chem. Commun., 2014, 50(56):7420- [25]Ghassemi H, Harlow W, Mashtalir O, et al.In Situ Environmental Transmission Electron Microscopy Study of Oxidation of Two-Dimensional Ti3C2 and Formation of Carbon-Supported TiO2[J].J. Mater. Chem. A, 2014, 2(35):14339-14343 [26]Xie Y, Naguib M, Mochalin V N, et al.Role of Surface Structure on Li-Ion Energy Storage Capacity of Two-Dimensional Transition-Metal Carbides[J].J. Am. Chem. Soc., 2014, 136(17):6385- [27]Li J, Yuan X, Lin C, et al.Achieving High Pseudocapacitance of 2D Titanium Carbide(MXene) by Cation Intercalation and Surface Modification[J].Adv. Energy. Mater., 2017, 7(15):1602725- [28]Lukatskaya M R, Kota S, Lin Z, et al.Ultra-High-Rate Pseudocapacitive Energy Storage in Two-Dimensional Transiton Metal Carbides[J].Nat. Energy, 2017, 2(10):17105- [29] Wen Y, Rufford T E, Chen X, et al.Nitrogen-Doped Ti3C2Tx MXene Electrodes for High-Performance Supercapacitors [J]. [J].Nano Energy, 2017, (38):368-376 [30]Zhao M Q, Ren CE, Ling Z, et al.Flexible MXeneCarbon Nanotube Composite Paper with High Volumetric Capacitance[J].Adv. Mater., 2015, 27(2):339-345 [31]Lin Z A, SunD A, Huang Q B, et al.Carbon Nanofiber Bridged Two-Dimensional Titanium Carbide as a Superior Anode for Lithium-Ion Batteries[J].J. Mater. Chem. A, 2015, 3(27):14096-14100 [32]Rakhi R B, Ahmed B, Anjum D, et al.Direct Chemical Synthesis of MnO2 Nanowhiskers on Transition-Metal Carbide Surfaces for Supercapacitor Applications[J].ACS Appl. Mater. Inter., 2016, 8(29):18806- [33] Wang Y, Dou H, Wang J, et al.Three-Dimensional Porous MXene/Layered Double Hydroxide Composite for High Performance Supercapacitors [J].[J].J. Power Sources, 2016, (327):221-228 [34]Boota M, Anasori B, Voigt C, et al.Pseudocapacitive Electrodes Produced by Oxidant-Free Polymerization of Pyrrole between the Layers of 2D Titanium Carbide (MXene)[J].Adv. Mater., 2016, 28(7):1517-1522 [35]Zhu M, Huang Y, Deng Q, et al.Highly Flexible,Freestanding Supercapacitor Electrode with Enhanced Performance Obtained by Hybridizing Polypyrrole Chains with MXene[J].Adv. Energy Mater., 2016, 6(21):1600969- |
相关文章 4
[1] | 刘桐桐 王凯 陈永修 韩永生. 有机添加剂对超级电容器中水系电解液理化性能的影响[J]. 过程工程学报, 2019, 19(6): 1242-1249. |
[2] | 常建霞酒红芳焦红倩张少梅武世梅宋霜. 三维氧化石墨烯-Ag/泡沫镍复合材料的制备及其电化学性能[J]. 过程工程学报, 2016, 16(2): 341-345. |
[3] | 穆学超王欣然郑诗礼王少娜郭奋杜浩张懿. 钙掺杂钒青铜超级电容器电极材料的制备及其性能[J]. , 2013, 13(5): 882-888. |
[4] | 黄庆华;王先友;李俊;戴春岭;李娜. Ni(OH)2/活性炭复合材料在超级电容器中的应用[J]. , 2007, 7(5): 1035-1039. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3203