1. 中国科学院过程工程研究所多相复杂系统国家重点实验室,离子液体清洁过程北京市重点实验室,北京 100190
2. 北京化工大学化工资源有效利用国家重点实验室,北京 100029
3. 中国石油大学(北京)化学工程学院,北京 102249
收稿日期:
2018-04-03修回日期:
2018-05-09出版日期:
2019-02-22发布日期:
2019-02-12通讯作者:
张香平基金资助:
基于含氟烟气净化的介孔氧化铝的可控合成基础研究;北京市自然基金Research progress of ammonia adsorption materials
Junli WANG1,2, Shaojuan ZENG1*, Neng CHEN3, Dawei SHANG1, Xiangping ZHANG1*, Jianwei LI21. State Key Laboratory of Multiphase Complex Systems, Beijing Key Laboratory of Ionic Liquids Clean Process, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
2. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
3. School of Chemical Engineering, China University of Petroleum, Beijing 102249, China
Received:
2018-04-03Revised:
2018-05-09Online:
2019-02-22Published:
2019-02-12Contact:
xiangping zhang Supported by:
Fundamental Research on the Controllable Synthesis of Mesoporous Alumina for the Purification of Fluorine Flue Gas摘要/Abstract
摘要: 氨是一种典型的有毒有害气态碱性污染物,也是PM2.5二次颗粒物的主要成因之一,大量含氨尾气排放不仅严重影响人类健康和生活环境,还会造成氨资源浪费。本工作综述了近年来多孔材料用于氨气吸附分离的研究现状和进展,重点论述了沸石、硅胶、活性炭、氧化石墨烯、多孔有机聚合物、共价有机骨架和金属?有机骨架材料改性前后对氨气的吸附性能,总结了吸附材料的改性方法,分析了该领域发展面临的主要问题,对未来的研究方向提出了建议。
引用本文
王均利 曾少娟 陈能 尚大伟 张香平 李建伟. 氨气吸附材料的研究进展[J]. 过程工程学报, 2019, 19(1): 14-24.
Junli WANG Shaojuan ZENG Neng CHEN Dawei SHANG Xiangping ZHANG Jianwei LI. Research progress of ammonia adsorption materials[J]. Chin. J. Process Eng., 2019, 19(1): 14-24.
使用本文
导出引用管理器 EndNote|Ris|BibTeX
链接本文:http://www.jproeng.com/CN/10.12034/j.issn.1009-606X.218171
http://www.jproeng.com/CN/Y2019/V19/I1/14
参考文献
[1] N.A. Travlou, T.J. Bandosz. N-doped polymeric resin-derived porous carbons as efficient ammonia removal and detection media[J]. Carbon , 2017, 117: 228-239. [2] J.W. Erisman, A. Bleeker, J. Galloway, M.S. Sutton. Reduced nitrogen in ecology and the environment[J]. Environmental Pollution, 2007, 150: 140-149. [3] A. Yokozeki, M.B. Shiflett.. Ammonia solubilities in room-temperature ionic liquids[J]. Industrial & Engineering Chemistry Research, 2007, 46 : 1605-1610. [4] J.J. Zhu, D.H. Xiao, J. Li, X.G. Yang, Y. Wu. Effect of Ce on NO direct decomposition in the absence/presence of O2 over La1-xCexSrNiO4 (0 <= x <= 0.3) [J]. Journal of Molecular Catalysis a-Chemical, 2005, 234 : 99-105. [5] J.L. Hueso, J. Cotrino, A. Caballero, J.P. Espinos, A.R. Gonzalez-Elipe. Plasma catalysis with perovskite-type catalysts for the removal of NO and CH4 from combustion exhausts[J]. Journal of Catalysis, 2007, 247: 288-297. [6] W. Zheng, J. Hu, S. Rappeport, Z. Zheng, Z. Wang, Z. Han, J. Langer, J. Economy, Activated carbon fiber composites for gas phase ammonia adsorption[J]. Microporous and Mesoporous Materials, 2016, 234 : 146-154. [7] 许俊香, 刘本生, 孙钦平等. 沸石添加剂对污泥堆肥过程中的氨挥发及相关因素的影响[J]. 农业资源与环境学报, 2015, 32(1):81-86. XU Jun-xiang, LIU Ben-sheng, SUN Qin-ping, et al. Effects of Zeolite Addition on Ammonia Volatilization and Influence Factors in Sludge Composting[J]. Journal of Agricultural Resources and Environment, 2015, 32:81-86. [8] 王秀艳, 刘长礼. 对粘性土孔隙水渗流规律本质的新认识[J]. 地球学报, 2003,24(1): 91-95. WANG Xi uyan , LI U Changli. New understandi ng of t he regularity of water seepage i n Cohesive soil[J]. acta geoscientia sinica, 2003,24(1): 91-95. [9] A. Srebowata, R. Baran, D. Lomot, D. Lisovytskiy, T. Onfroy, S. Dzwigaj. Remarkable effect of postsynthesis preparation procedures on catalytic properties of Ni-loaded BEA zeolites in hydrodechlorination of 1,2-dichloroethane[J]. Applied Catalysis B-Environmental, 2014, 147: 208-220. [10] M.P. Bernal, J.M. Lopezreal. NATURAL ZEOLITES AND SEPIOLITE AS AMMONIUM AND AMMONIA ADSORBENT MATERIALS[J]. Bioresource Technology, 1993, 43: 27-33. [11] J. Helminen, J. Helenius, E. Paatero, I. Turunen. Adsorption equilibria of ammonia gas on inorganic and organic sorbents at 298.15 K[J]. Journal of Chemical and Engineering Data , 2001, 46 : 391-399. [12] 翁晴. 改性沸石在水处理中的应用[J]. 山东化工, 2014, 43(1): 54-55. WENG Qing. The Application of Modify Zeolite in Water Treatment[J]. Shandong chemical industry, (2014) 54-55. [13] T.G. Glover, G.W. Peterson, B.J. Schindler, D. Britt, O. Yaghi. MOF-74 building unit has a direct impact on toxic gas adsorption[J]. Chemical Engineering Science , 2001, 66: 163-170. [14] E. Witter, H. Kirchmann, PEAT. ZEOLITE AND BASALT AS ADSORBENTS OF AMMONIACAL NITROGEN DURING MANURE DECOMPOSITION[J]. Plant and Soil, 1989, 115: 43-52. [15] 万政钰. 利用改性沸石吸附剂处理氨气的研究[D]. 吉林大学, 2009. Wan Zhengyu, Study on the Treatment of Ammonia Using Modified Zeolite Adsorbent[D]. Jilin University, 2009. [16] H. Taghipour, M.R. Shahmansoury, B. Bina, H. Movahdian. Operational parameters in biofiltration of ammonia-contaminated air streams using compost-pieces of hard plastics filter media[J]. Chemical Engineering Journal, 2008, 137 : 198-204. [17] 杨国华, 黄统琳, 姚忠亮,等. 吸附剂的应用研究现状和进展[J]. 化学工程与装备, 2009, 6:83-88. Yang Guo Hua, Huang Tong Lin, Yao Zhongliang, et al. Current Application Research on the Adsorbents and Their Development Tendency[J]. Chemical Engineering&Equipment, 2009, 6:83-88. [18] 张滢, 张景成, 崔自敏, 等. 铝基吸附剂去除饮用水中氟的研究进展[J]. 环境科学与技术, 2012, 35(4): 93-98. ZHANG Ying, ZHANG Jing-cheng, CUI Zimin, et al. Development of Alumina-based Materials in Defluoridation of Drinking Water[J]. Environmental Science&Technology, 2012, 35(4): 93-98. [19] S. Abe, T. Sawane, K. Sekiguchi, T. Matsuo. COLLECTION OF TRACE FLUORIDE AND HYDROFLUORIC-ACID FROM AQUEOUS SAMPLES BY CALCIUM HYDROXYAPATITE[J]. International Journal of Environmental Analytical Chemistry, 1982, 11: 87-96. [20] V.E. Sharonov, Y.I. Aristov. Ammonia adsorption by MgCl2, CaCl2 and BaCl2 confined to porous alumina: The fixed bed adsorber[J]. Reaction Kinetics and Catalysis Letters, 2005, 85: 183-188. [21] D. Saha, S.G. Deng. Characteristics of Ammonia Adsorption on Activated Alumina[J]. Journal of Chemical and Engineering Data, 2010, 55: 5587-5593. [22] C. Yeom, Y. Kim. Adsorption of ammonia using mesoporous alumina prepared by a templating method[J]. Environmental Engineering Research, 2017, 22 : 401-406. [23] 管蒙蒙, 邱建勋, 高修涛, 等. Sol-gel法制备多孔氧化铝及其对甲醛的吸附研究[J]. 山东化工, 2008, 37(4): 4-6+10. GUAN Mengmeng, QIU JianXun, GAO Xiutao, et al. Research on Preparation of Alumina with Sol-gel Method and Its Adsorption Property for Formaldehyde [J]. Shandong chemical industry, 2008, 37(4): 4-6+10. [24] S. Kittaka, M. Morimura, S. Ishimaru, A. Morino, K. Ueda. Effect of Confinement on the Fluid Properties of Ammonia in Mesopores of MCM-41 and SBA-15[J]. Langmuir, 2009, 25: 1718-1724. [25] A.M.B. Furtado, Y. Wang, T.G. Glover, M.D. LeVan. MCM-41 impregnated with active metal sites: Synthesis, characterization, and ammonia adsorption[J]. Microporous and Mesoporous Materials, 2011, 142 : 730-739. [26] H. Fortier, P. Westreich, S. Selig, C. Zelenietz, J.R. Dahn. Ammonia, cyclohexane, nitrogen and water adsorption capacities of an activated carbon impregnated with increasing amounts of ZnCl2, and designed to chemisorb gaseous NH3 from an air stream[J]. J. Colloid Interface Sci, 2008, 320: 423-435. [27] A.M. Furtado, D. Barpaga, L.A. Mitchell, Y. Wang, J.B. DeCoste, G.W. Peterson, M.D. Levan. Organoalkoxysilane-grafted silica composites for acidic and basic gas adsorption[J]. Langmuir, 2012, 28: 17450-17456. [28] A.M.B. Furtado, Y. Wang, M.D. LeVan. Carbon silica composites for sulfur dioxide and ammonia adsorption[J]. Microporous and Mesoporous Materials, 2013, 165 : 48-54. [29] A.M.B. Furtado, J. Liu, Y. Wang, M.D. LeVan. Mesoporous silica–metal organic composite: synthesis, characterization, and ammonia adsorption[J]. Journal of Materials Chemistry, 2011, 21 :6698. [30] H.S. Teng, T.S. Yeh, L.Y. Hsu. Preparation of activated carbon from bituminous coal with phosphoric acid activation[J]. Carbon , 1998,36: 1387-1395. [31] C.-C. Huang, H.-S. Li, C.-H. Chen. Effect of surface acidic oxides of activated carbon on adsorption of ammonia[J]. Journal of hazardous materials ,2008,159 :523-527. [32] A. Qajar, M. Peer, M.R. Andalibi, R. Rajagopalan, H.C. Foley. Enhanced ammonia adsorption on functionalized nanoporous carbons[J]. Microporous and Mesoporous Materials, 2015, 218: 15-23. [33] X.S.S.Z.W. Zhang. Effect of surface modification of activated carbon on its adsorption capacity for NH3[J]. Journal of China University of Mining & Technology, 2008,18: 0261-0265. [34] C. Petit, C. Karwacki, G. Peterson, T.J. Bandosz. Interactions of ammonia with the surface of microporous carbon impregnated with transition metal chlorides[J]. Journal of Physical Chemistry C, 2007, 111: 12705-12714. [35] C. Petit, K. Kante, T.J. Bandosz. The role of sulfur-containing groups in ammonia retention on activated carbons[J]. Carbon, 2010, 48 : 654-667. [36] M. Seredych, T.J. Bandosz. Mechanism of ammonia retention on graphite oxides: Role of surface chemistry and structure[J]. Journal of Physical Chemistry C,2007, 111:15596-15604. [37] M. Seredych, A.V. Tamashausky, T.J. Bandosz. Graphite Oxides Obtained from Porous Graphite: The Role of Surface Chemistry and Texture in Ammonia Retention at Ambient Conditions[J]. Advanced Functional Materials, 2010, 20: 1670-1679. [38] T. Ben, H. Ren, S. Ma, D. Cao, J. Lan, X. Jing, W. Wang, J. Xu, F. Deng, J.M. Simmons, S. Qiu, G. Zhu. Targeted Synthesis of a Porous Aromatic Framework with High Stability and Exceptionally High Surface Area[J]. Angewandte Chemie-International Edition, 2009, 48 : 9457-9460. [39] J.F. Van Humbeck, T.M. McDonald, X. Jing, B.M. Wiers, G. Zhu, J.R. Long. Ammonia capture in porous organic polymers densely functionalized with Bronsted acid groups[J]. J Am Chem Soc, 2014, 136: 2432-2440. [40] D.T. McQuade, A.E. Pullen, T.M. Swager. Conjugated polymer-based chemical sensors[J]. Chemical reviews, 2000, 100 :2537-2574. [41] C.J. Doonan, D.J. Tranchemontagne, T.G. Glover, J.R. Hunt, O.M. Yaghi. Exceptional ammonia uptake by a covalent organic framework[J]. Nature Chemistry, 2010, 2: 235-238. [42] W.-J. Kim. Studies on Adsorption and Desorption of Ammonia Using Covalent Organic Framework COF-10[J]. Applied Chemistry for Engineering, 2016, 27 : 265-269. [43] Y. Li, R.T. Yang. Hydrogen storage in metal-organic and covalent-organic frameworks by spillover[J]. Aiche Journal, 2008, 54: 269-279. [44] P. Kuhn, M. Antonietti, A. Thomas, Porous. covalent triazine-based frameworks prepared by ionothermal synthesis[J]. Angewandte Chemie-International Edition, 2008, 47: 3450-3453. [45] D. Britt, D. Tranchemontagne, O.M. Yaghi. Metal-organic frameworks with high capacity and selectivity for harmful gases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105: 11623-11627. [46] D. Saha, S. Deng. Ammonia adsorption and its effects on framework stability of MOF-5 and MOF-177[J]. Journal of Colloid and Interface Science, 2010, 348: 615-620. [47] C. Petit, T.J. Bandosz. Enhanced Adsorption of Ammonia on Metal-Organic Framework/Graphite Oxide Composites: Analysis of Surface Interactions[J]. Advanced Functional Materials, 2010, 20: 111-118. [48] C. Petit, L. Huang, J. Jagiello, J. Kenvin, K.E. Gubbins, T.J. Bandosz. Toward Understanding Reactive Adsorption of Ammonia on Cu-MOF/Graphite Oxide Nanocomposites[J]. Langmuir, 2011, 27: 13043-13051. [49] G.W. Peterson, G.W. Wagner, A. Balboa, J. Mahle, T. Sewell, C.J. Karwacki. Ammonia Vapor Removal by Cu-3(BTC)(2) and Its Characterization by MAS NMR[J]. Journal of Physical Chemistry C, 2009, 113: 13906-13917. [50] B. Tan, C. Chen, L.-X. Cai, Y.-J. Zhang, X.-Y. Huang, J. Zhang. Introduction of Lewis Acidic and Redox-Active Sites into a Porous Framework for Ammonia Capture with Visual Color Response[J]. Inorg Chem, 2015, 54 :3456-3461. [51] Y. Chen, L. Li, J. Li, K. Ouyang, J. Yang. Ammonia capture and flexible transformation of M-2(INA) (M = Cu, Co, Ni, Cd) series materials[J]. Journal of hazardous materials, 2016, 306 : 340-347. [52] F.T.U. Kohler, S. Popp, H. Klefer, I. Eckle, C. Schrage, B. B?hringer, D. Roth, M. Haumann, P. Wasserscheid. Supported ionic liquid phase (SILP) materials for removal of hazardous gas compounds – efficient and irreversible NH3 adsorption[J]. Green Chemistry, 2014, 16: 3560-3568. [53] K.N. Ruckart, Y. Zhang, W.M. Reichert, G.W. Peterson, T.G. Glover. Sorption of Ammonia in Mesoporous-Silica Ionic Liquid Composites[J]. Industrial & Engineering Chemistry Research ,2016, 55: 12191-12204. |
相关文章 15
[1] | 宋春雨 聂普选 马守涛 任国瑜. 典型过程强化技术在纳米材料制备中的应用进展[J]. 过程工程学报, 2021, 21(4): 373-382. |
[2] | 郑征 何宏艳. 基于全球专利信息的离子液体领域发展态势分析[J]. 过程工程学报, 2021, 21(4): 383-393. |
[3] | 郭艳东 张晓春 游琳琳. 水对离子液体微观结构和传输性能的影响[J]. 过程工程学报, 2021, 21(4): 431-439. |
[4] | 潘凤娇 周乐 曾少娟 刘雪 刘艳荣 聂毅. 离子液体/羊毛纤维/凝固剂三元相图的构建[J]. 过程工程学报, 2021, 21(2): 160-166. |
[5] | 王雨晴 刘居陶 徐琴琴 银建中. 超临界流体沉积制备[Emim][BF4]支撑型离子液体膜及其气体分离性能[J]. 过程工程学报, 2021, 21(2): 134-143. |
[6] | 郭成 高翔鹏 李明阳 郝军杰 龙红明 赵卓. 海藻酸钠基吸附材料去除水中重金属离子的研究进展[J]. 过程工程学报, 2021, 21(1): 3-17. |
[7] | 史怡坤 李瑞江 朱学栋 方海灿 朱子彬. 真空变压吸附制氧径向流吸附器的流动特性模拟[J]. 过程工程学报, 2021, 21(1): 18-26. |
[8] | 贾韫翰 丁磊 任培月 李凌 王丹丹. 基于响应曲面法的磁性离子交换树脂去除甲基橙和刚果红的优化[J]. 过程工程学报, 2020, 20(9): 1035-1044. |
[9] | 刘亚迪 Niklas Hedin 赵国英 贾利娜 聂毅. 低场MRI原位研究离子液体合成及相态变化[J]. 过程工程学报, 2020, 20(7): 807-821. |
[10] | 陶文 张 毅 孔祥法 张晚春 樊传刚. 无机水合盐相变材料过冷度抑制方法的研究进展[J]. 过程工程学报, 2020, 20(6): 619-627. |
[11] | 杨帆 温良英 赵岩 徐健 张生富 杨仲卿. TiO2(100)表面C和Cl2吸附反应的第一性原理计算[J]. 过程工程学报, 2020, 20(5): 569-575. |
[12] | 薛岗 丁磊 高阳 钟梅英. 表面印迹耦合溶胶-凝胶法制备4-硝基酚印迹材料及性能表征[J]. 过程工程学报, 2020, 20(4): 440-448. |
[13] | 张家赫 邢春贤 张海涛. 纳米SiO2填料对离子凝胶电解质及高压超级电容器性能的影响[J]. 过程工程学报, 2020, 20(3): 354-361. |
[14] | 张晶晶 李建 肖清贵 张绘 杜嬛 薛天艳 齐涛. 纳米Co/rGO磁性复合吸附材料的制备及对Cu2+的吸附性能[J]. 过程工程学报, 2020, 20(12): 1472-1482. |
[15] | 杨建林 张宇鳌 马淑花 王晓辉. 不同粒径改性粉煤灰对磷酸根吸附性能的影响[J]. 过程工程学报, 2020, 20(11): 1281-1288. |
PDF全文下载地址:
http://www.jproeng.com/CN/article/downloadArticleFile.do?attachType=PDF&id=3201