非整倍体变异通常是指染色体非成套的数目变异。动植物的非整倍体通常会表现出严重的表型缺陷,往往导致胚胎致死,即使有幸存活也大多发育迟缓个体矮小。人类中最为典型的例子是唐氏综合症,由二倍体(2n)背景下21号染色体增加一个拷贝所导致。另外,非整倍体变异是肿瘤的标志性特征,超过90%的肿瘤细胞都是非整倍体 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26减数分裂过程中,纺锤体组装对于同源染色体间的正确分离极其重要。但是,不同物种间纺锤体组装的机制并不保守。在小鼠、果蝇和爪蟾等模式动物中,由中心体或者染色体本身介导的纺锤体组装,其细胞学过程的了解已经比较清楚。然而对于植物性母细胞减数分裂过程中,纺锤体的组装和细胞极性形成的认识还十分缺乏。 中国科学 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26茉莉酸作为一种重要的植物激素不仅调控植物对于机械损伤、昆虫取食和腐生型病原菌侵害的防御反应,还参与调控诸多生长发育过程。basic Helix-Loop-Helix (bHLH)类型转录因子MYC2是茉莉酸信号通路的核心转录因子,其所指导的转录调控过程是整个茉莉酸信号通路的核心事件。目前人们对于MY ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26植物着丝粒是基因组中进化最剧烈、结构最复杂的区域,在物种形成和分化过程中发挥重要作用。大多数植物着丝粒结构复杂,主要是由高度重复的卫星DNA (satellite)以及中间穿插的反转座子序列 (CR) 组成,其中着丝粒satellite序列单元长度主要集中在150 – 180 bp之间,例如水稻Ce ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26分枝是决定植物株型发育的主要决定因素,同时也是决定产量的重要农艺性状之一。植物激素,如生长素、细胞分裂素等,在调控植物株型中起到了关键作用。独角金内酯是近年来新发现的一种植物激素,该激素可通过抑制侧芽的生长在株型建成中发挥关键作用。对不同植物激素之间相互调控关系的解析与研究具有重要的科学意义和应用价 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26株高和分蘖是影响水稻株型和产量的核心要素。分蘖数直接影响有效穗数,因此对水稻产量的形成具有重要影响。株高能够直接影响作物的耐肥性和抗倒伏性,矮化育种推动了第一次“绿色革命”的发生。水稻的株高与分蘖通常存在一种负相关的关系,株高高的水稻一般分蘖较少,而株高矮的水稻一般分蘖较多。赤霉素是影响水稻株高的主 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26分蘖角度是水稻株型的重要决定因素之一,与水稻产量密切相关。培育分蘖角度适中的水稻品种能够有效地提高群体产量;解析水稻分蘖角度的调控机制有助于为水稻株型的遗传改良提供理论指导和基因资源。目前,已经克隆了多个调控水稻分蘖角度形成的关键基因,但对这些基因的调控机制及它们之间的遗传关系仍然缺乏系统深入的研究 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26增强子是真核细胞调控基因转录的重要元件。在模式动物中,增强子与相应的基因启动子通过形成染色质环在物理上相互靠近,从而精确调控基因的时空特异性表达。然而目前在植物中,如何界定特定基因的启动子和增强子元件尚未明确,特定生理途径中增强子的系统鉴定未见报道,增强子与启动子之间染色质环的形成及其作用机理也不清 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26细胞分裂和分化协同调控了植物器官的生长。在细胞分化过程中常常伴随着细胞核内复制发生(Endoreduplication)。核内复制是细胞核内发生基因组复制,但细胞与细胞核不分裂,导致细胞核内基因组倍性增加的现象。核内复制普遍存在于动植物中,对细胞分化、细胞生长和器官大小具有重要调节作用,但其调节机制 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26磷是植物生长发育必需的大量元素之一,土壤中低磷胁迫会影响植物的生长并影响作物的产量。我国是世界上磷肥使用量最大的国家,施用磷肥在提高作物产量的同时也带来了一系列环境污染问题。因此,解析植物对低磷胁迫的响应机制并培育磷高效利用的作物是作物育种上的一个重要研究方向。 泛素化修饰是一种重要的蛋白质翻译后 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26二硫键的形成对于真核生物的分泌蛋白和质膜蛋白在内质网中的折叠至关重要。在动物和酵母中,内质网氧化还原蛋白oxidoreductin-1 (Ero1) 是二硫键的主要供体。但是,植物Ero1在蛋白质二硫键形成过程中作用机制还不清楚。 中国科学院遗传与发育生物学研究所农业资源研究中心吕东平研究组与中国 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26人体不仅需要碳水化合物、脂类、蛋白质等三大营养素,还需要铁、锌、硒、碘等16种矿物元素,以及维生素A、维生素E、叶酸等13种维生素。目前的研究表明,如果必需的微量营养素长期摄入不足,人体就会出现免疫力下降、智力低下、发育不全、劳动能力丧失等各种健康问题。2005年,世界卫生组织将这一现象称为“隐性饥 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26植物不可移动,但在自然土壤中进化出了强大的适应能力,在根系招募大量且种属特异的大量且种类繁多的微生物(根系微生物组)。这些微生物参与植物吸收营养、抵抗疾病和非生物胁迫等重要生理过程。植物调控根系微生物组的机制对植物生长和健康非常重要,也是根系微生物组领域的研究热点。植物将20 ~ 30%光合作用产物 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26The Plant Cell是植物领域的著名学术期刊,对植物学的发展起到了重要的引领作用。为庆祝创刊30周年,The Plant Cell杂志社邀请部分编委会成员及其他科学家对发表在该杂志的重要研究工作进行评述,以期增进对植物科学过去30年中重要研究进展的认识,激发对未知领域的探索。李家洋研究员受邀 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26核小体是真核生物染色质的基本单位,由DNA缠绕组蛋白八聚体构成。组蛋白翻译后共价修饰是表观遗传调控的重要方式之一,通过影响染色质的状态而调控基因表达等过程。组蛋白H3第27位赖氨酸的三甲基化修饰(H3K27me3)通过维持基因的沉默状态,在动植物细胞命运决定以及生长发育中发挥重要的调控作用。基因组中 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26microRNAs (miRNAs) 是一类进化上保守的、具有调控功能的非编码小分子RNA。miRNAs以碱基互补配对的形式靶向靶mRNA,将其降解或抑制翻译,进而在转录后水平负调控靶mRNA。在植物中,miRNAs几乎在所有的生物学过程中都发挥重要的调控作用,特别是对一些重要的农艺性状的精细调控使 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26miRNA是调控植物生长、发育及环境适应性的一类重要转录后调节因子。中国科学院遗传与发育生物学研究所曹晓风研究组早期通过对水稻miRNA加工关键酶OsDCL1蛋白的研究,鉴定到了一系列重要的水稻miRNA成员(Liu et al., Plant Physiology, 2005)。其中,miR528 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26通过基因组的定向与特异改造而实现品种的精准设计和培育是作物遗传改良研究的重要科学问题,基因组编辑有望为该问题的解决提供重要策略与途径。中国科学院遗传与发育生物学研究所高彩霞研究组致力于植物基因组编辑技术创新及作物分子设计育种应用的研究。2019年3月5日,国际重要综述期刊Annual Review ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26在土壤中,植物的根系除了固着植物并作为吸收水分和营养的器官以外,还是微生物聚集栖息和繁衍的场所。这些微生物及其相互关系统称为根系微生物组。这些根系微生物伴随着植物的整个生长周期,帮助植物吸收营养、抵抗病害和适应胁迫环境。亚洲栽培稻 (Oryza sativa L.)主要分为籼稻和粳稻两个亚种。相比粳 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26分蘖是决定水稻产量的核心要素之一。水稻分蘖形成一般认为包括分蘖芽的形成与分蘖芽的伸长两个独立的生物学过程。解析水稻分蘖形成的分子机理具有重要的科学意义与理论价值,同时对水稻株型改良及品种设计具有重要的应用价值。在过去二十余年,中国科学院遗传与发育生物学研究所植物基因组学国家重点实验室李家洋院士及其合 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26抗病蛋白是植物免疫的重要成员,以NLR类蛋白居多,以水稻为例,其基因组中就拥有超过400个编码NLR蛋白的基因,由此可见NLR蛋白对植物免疫的重要性。作为免疫受体,抗病蛋白能引发对多种病原微生物以及昆虫的防卫反应,从而赋予植物对病原小种的免疫性。目前已知的抗病蛋白数量不少,但从病原物被抗病蛋白所识别 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26中国从1990到2012年人均消耗谷物口粮下降了38%,但人均消费肉奶增加了226%。近年来城市化发展让肉奶的需求进一步增加。我国每年生产约6亿吨粮食,其中50%被用于喂猪以生产占全球65%的猪肉。生产猪肉不仅消耗大量的粮食还产生大量难以处理的各种污染,而且猪只能消耗籽粒,由此每年产生多达12亿吨的 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26杂草的有效防控将为实现农业可持续生产和粮食安全奠定基础。抗除草剂品种的培育极大地提升了杂草防控的效率和效果,因此得到了大规模的推广种植,并取得了显著经济效益。近年来,我国小麦生产中的杂草问题日益突出,特别是小麦的近源杂草节节麦对麦田危害日益严重,现有的化学防治手段非常有限。目前,甲基二磺隆是唯一的节 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26植物固着生长并通过协调生长发育过程和抗性反应从而应对环境变化带来的胁迫与损伤。植物受到由生物或非生物胁迫引起的物理伤害以后,可以通过激活生长过程完成组织和器官再生。然而,人们尚不清楚植物遭受机械损伤以后激活器官再生的分子机理。 在特定逆境胁迫下,植物通过茉莉酸途径抑制主根生长而促进侧根发生(Sun ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26硝酸盐(nitrate)不仅是植物最主要的无机氮源,还作为信号分子激活一系列基因表达,触发硝酸盐应答反应,进而促进氮高效利用。细胞膜定位的硝酸盐转运蛋白NRT1.1(拟南芥AtNRT1.1和水稻NRT1.1B)作为硝酸盐受体(sensor),可以感知外界硝酸盐信号并触发下游应答基因表达。然而,长期以 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26植物开花时间受到复杂多变的环境信号调控,其中光周期和温度是影响开花的关键因素。光周期和温度通过遗传和表观遗传机制调控开花途径整合子因子FLOWERING LOCUS T (FT)表达最终影响植物开花。表观遗传修饰在调节植物的生长发育和环境响应等方面发挥了重要作用,主要包括DNA甲基化、组蛋白变体与修 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26细胞壁是多糖组成的复杂网络结构,这些多糖经折叠、交联,形成适应植物生长发育所需的细胞壁高级结构。研究细胞壁高级结构形成的精准调控机制是植物学新的学科前沿。 乙酰化是一种广泛存在于细胞壁多糖上的修饰形式,可控制多糖构象及多聚物间的交联,对高级结构的构建至关重要,成为解析细胞壁结构及其功能的突破口。阿 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26肠道微生物组已被证实对人类和动物的生理健康存在多种影响。近日,中国科学院遗传与发育生物学研究所John Speakman研究团队揭示了肠道菌群在低温条件下对动物的体温调节过程起到的重要作用。 众所周知,棕色脂肪组织是一种功能特化为产热的组织,低温时动物通过激活棕色脂肪组织和促进白色脂肪棕色化的方式 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26人类遗传疾病和农作物农艺性状很多情况下是由基因组中的单个或少数核苷酸的突变引起的。因此,基因组中关键核苷酸变异的鉴定与定向修正是人类遗传疾病治疗及动植物育种的重要方向。基因组编辑工具单碱基编辑器的开发,为定向编辑和修正基因组中的关键核苷酸变异提供了重要工具,展现了其在遗传疾病治疗与动植物新品种培育等 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26植物种子大小是重要的产量性状,种子大小的调控也是重要的发育生物学问题。因此,解析种子大小调控的分子机制,可以为作物的高产育种提供理论基础和基因资源。近年来植物种子大小的调控机制研究进展迅速,目前已成为植物领域研究的热点和前沿。 中国科学院遗传与发育生物学研究所李云海研究组长期致力于植物种子大小调控的 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26全球环境气候变化带来的频繁高温胁迫是植物面临的主要的非生物胁迫之一,对农业生产和粮食安全造成严重威胁。研究发现植物一段时间的高温响应能通过减数分裂传递给下一代,即使后代没有受到逆境影响也能形成传代记忆,增强植物后代对逆境的适应性。表观遗传修饰在调节植物的生长发育和响应逆境胁迫等方面发挥了重要作用,参 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺利转 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26金鱼草(Antirrhinum majus L.)也称龙头花(snapdragon),车前科多年生草本植物,因花似金鱼或龙头而得名,是常见的盆栽、切花及庭院观赏的园艺花卉,在古罗马时代就已完成了驯化。在过去的三十年中,金鱼草一直作为分子和发育遗传学的模式作物,很多关键基因是在金鱼草中被首次发现,包括 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26被子植物雄配子发生过程中,单倍体小孢子经历一次不对称有丝分裂(PMI)产生营养细胞和生殖细胞,之后生殖细胞再进行一次对称的有丝分裂(PMII)形成两个精细胞。拟南芥花粉常被看作一个理想的发育生物学模型,这个简单的系统不仅经历了细胞的分裂、分化、细胞命运的决定等重要生物学过程,还涉及大量花粉特异基因的 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26儿童急性淋巴细胞白血病(ALL)是儿童最常见的恶性肿瘤性疾病,位居儿童疾病致死率之首。淋巴细胞分化受阻是白血病重要的表型。但是,导致儿童白血病淋巴细胞分化障碍的发病机理目前还不清楚。 中国科学院遗传与发育生物学研究所鲍时来研究团队成员通过检测上百例儿童B系前体细胞急性淋巴细胞白血病(BCP-ALL) ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26基因差异表达是细胞分化和不同细胞类型形式特异功能的基础。细胞特征的转录图谱对于了解不同类型细胞如何生长发育、响应环境至关重要。但植物细胞由细胞壁固着,不易分离,很难获得细胞类型特异的转录数据。 中国科学院遗传与发育生物学研究所焦雨铃研究组在之前的工作中建立了器官边界区的细胞特异表达图谱 (Tian ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26作为一种重要的植物激素,茉莉酸调控植物的防御反应和适应性生长。当植物遭遇病虫侵害或其它逆境胁迫时,活性茉莉酸被受体COI1 (CORONATINE-INSENSITIVE 1) 识别而释放核心转录因子MYC2的活性,MYC2与转录中介体亚基MED25形成功能复合物而在全基因组范围内激活茉莉酸响应基因 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26“求同存异”是所有生物过程的固有属性。基因型相同的个体间的基因表达、细胞行为、发育过程、形态结构等,在大体一致的前提下均表现出一定程度的变异。当前的研究大多聚焦于解析“同”,即分子或细胞的平均行为如何被调控,而对于“异”的理解,即表型变异的程度、特性、意义和调控方面的知识相对匮乏。细胞是生物体结构和 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26细胞生物学著名期刊The Journal of Cell Biology于2018年12月20日以Article形式在线发表了中国科学院遗传与发育生物学研究所杨崇林实验室和郭伟翔实验室合作的研究论文“The lysine catabolite saccharopine impairs develop ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26减数分裂过程中同源重组不仅是物种遗传多样性的基础,而且重组产生的交叉结可以将同源染色体紧密连接在一起,保证后期I同源染色体的正确分离。第一次减数分裂前期,同源染色体重组、配对和联会紧密联系,这些事件在时间和空间上有序发生、协同促进整个减数分裂进程。HOP2是一个保守的减数分裂蛋白,前期研究表明HOP ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26WDR62基因突变是导致小头症的第二大主因,中国科学院遗传与发育生物学研究所许执恒研究组前期研究结果发现Wdr62降低会导致神经前体细胞增殖减少,分化提前,并进一步导致神经元数量减少 (Xu et al., Cell Reports 2014)。然而,WDR62调控神经发生及大脑尺寸的分子机制依然不 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26响应调节因子(Response regulators,RRs)参与了诸多生物学过程,涉及生物体的生长、再生、发育、胁迫反应等等。但是,对于响应调节因子在减数分裂过程中的作用还未见报道。 中国科学院遗传与发育生物学研究所程祝宽研究组以水稻为模式植物,通过筛选减数分裂缺陷的不育突变体,并克隆相关基因, ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26自闭症(孤独症)谱系障碍(ASD)是由脑发育异常导致的常见精神疾病,其临床表现为重复刻板行为、社交障碍及语言发育异常。该病的发病率高,发病机理不清,迄今也没有有效的治疗方法,因此潜在自闭症致病基因的动物模型验证及新机制的发现亟需深入研究。先前的研究在自闭症患者中发现SH3RF2 (亦称POSH2) ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-2620世纪60年代初,Joseph Altman 首次观察到了成体神经发生现象。90年代后,以Fred Gage为首等研究人员揭示,成体神经发生主要参与大脑可塑性以及学习记忆。此外,神经疾病常常伴随着成体神经发生的异常。因此,阐明成体神经发生的异常与神经疾病的因果关系仍是此研究领域的研究热点之一。杨崇 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26硒是人体必需的微量营养元素,具有抗氧化、提高免疫力、延缓衰老等多种作用。人体主要通过饮食从植物性食物尤其谷物中获取硒。水稻是世界上超过一半人口的主食,然而稻米硒含量普遍较低,难以满足人体健康对硒的需求。在稻田淹水还原条件下,水稻根系主要吸收亚硒酸盐。然而亚硒酸盐被根系吸收后大部分转化为硒代蛋氨酸而滞 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26在1978年,Schofield首次提出干细胞的微环境定义,并发现局部微环境对造血干细胞干性的维持是必要的。从此,越来越多的研究定义了各种组织的干细胞微环境。然而,干细胞本身是否能作为微环境因素进而影响其子代细胞的发育尚未完全被揭示。在成体神经发生微环境中,成体神经干/前体细胞能够终生产生功能性神经 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26双生病毒(Geminiviruses)是存在于植物中唯一一类具有孪生颗粒形态的单链DNA病毒,也是目前已知的最大的单链DNA病毒家族。据ICTV(International Committee on Taxonomy of Viruses)报道该类病毒目前已增至九个属,其在单子叶和双子叶植物中具有广 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26有丝分裂过程中,植物的胞质分裂与其它生物由外而内的胞质分裂方式不同,它的细胞板由内而外延伸,最终将细胞质分离。然而对于植物花粉母细胞减数分裂过程中,胞质分裂调控的分子机制还很少了解。 中国科学院遗传与发育生物学研究所程祝宽研究组在水稻中鉴定出一个调控花粉母细胞胞质分裂的蛋白DCM1(Defecti ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高尔基体不仅是细胞内膜系统膜泡运输的核心,而且也是细胞壁和胞外基质多糖、质膜糖脂合成、以及蛋白糖基化修饰的位点。不同于动物细胞,植物细胞高尔基体产生一个分离的、独立完成不同功能的反面管网结构TGN(Trans-Golgi Network),专门负责分选和分泌来自反面膜囊的物质。同时,TGN兼任了早胞 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-2626S蛋白酶体系统通过有效降解许多关键蛋白因子而调控植物的生长发育和对环境胁迫的响应。26蛋白酶体系统由20S蛋白酶体和19S蛋白酶体两个亚复合物组成。20S蛋白酶体由多个α亚基和β亚基按照α1-7/β1-7/β1-7/α1-7方式组装成一个中空的圆柱体结构。其亚基的突变与人类许多疾病的产生密切相关 ...
中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26