![]() |
TRIC作为反向离子通道及活性调控的结构基础。A: TRIC家族进化树;B&C: TRIC-A三维结构;D:TRIC结构中的DAG分子;E:钙离子调控TRIC的活性;F:TRIC调控胞内钙离子释放的新机制。 |
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
陈宇航研究组在新型阳离子通道TRIC的研究中再次取得突破
本站小编 Free考研/2020-05-26
钙离子作为第二信使,在细胞生命活动中发挥重要作用。肌浆网/内质网膜上RyR受体和IP3R是钙离子释放的重要通道,而SERCA蛋白是钙库吸收钙离子的重要离子泵。这些蛋白质机器的顺利发挥功能有赖于一系列离子通道的共同参与和协同完成。新型离子通道TRIC在钙离子释放过程中提供反向离子电流,帮助钙离子顺利转运。中国科学院遗传与发育生物学研究所陈宇航研究组开展了生物信息学分析,发现TRIC家族存在于高等生物和低等生物中,在脊椎动物阶段分化出TRIC-A和TRIC-B两大亚型。TRIC-A的单核苷多态性与高血压相关,而TRIC-B基因突变导致骨发育不全病。陈宇航组在2017年完成来自古菌SaTRIC和细菌CpTRIC的新型离子通道高分辨率三维结构及功能研究,有关结果发表在Nature Communications(DOI:10.1038/ncomms15103)。近期,陈宇航研究组进一步解析了脊椎动物TRIC蛋白两种亚型的三维结构,包括结合钙离子和未结合钙离子的状态。这些结构揭示了TRIC是对称的三聚体离子通道。钙离子结合在TRIC通道luminal侧,使之处于关闭状态,并抑制离子通道活性。相关研究发现TM4螺旋可感应膜电位变化并调控通道激活。此外,结构中还发现甘油二脂DAG的结合,揭示脂类分子可能调控TRIC通道的结构-功能。这些研究揭示了TRIC离子通道具有新颖的调控机制,有关结果于以“Structural basis for activity of TRIC counter-ion channels in calcium release”为题,于2019年2月15日在《美国科学院院报》PNAS发表(DOI:10.1073/pnas.1817271116)。陈宇航研究组学生王小慧、曾洋、李德林,工作人员苏敏、高峰和西安交通大学Xie Wenjun副教授为该论文的共同第一作者。该文通讯作者是中科院遗传发育所的陈宇航研究员和哥伦比亚大学Wayne Hendrickson教授。该研究还得到中科院遗传发育所税光厚研究员和Sin Man Lam博士,纽约大学李飞教授,布鲁克海文国家实验室Liu Qun博士和哥伦比亚大学Oliver Clarke 博士等帮助。该研究得到了中国科学院战略性先导专项,科技部重大研发计划和国家自然科学基金项目资助。
相关话题/结构 遗传
鲍时来研究组发现儿童急性淋巴细胞白血病发病的表观遗传新机制
儿童急性淋巴细胞白血病(ALL)是儿童最常见的恶性肿瘤性疾病,位居儿童疾病致死率之首。淋巴细胞分化受阻是白血病重要的表型。但是,导致儿童白血病淋巴细胞分化障碍的发病机理目前还不清楚。 中国科学院遗传与发育生物学研究所鲍时来研究团队成员通过检测上百例儿童B系前体细胞急性淋巴细胞白血病(BCP-ALL) ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26曹晓风研究组应邀在Current Opinion in Plant Biology撰写“表观遗传修饰的靶向调控机制”综述文章
表观遗传调控是生物体调节基因表达及染色体行为的重要机制之一,对基因表达调控、转座子沉默、基因组稳定性以及生物体生长发育有着重要的调控作用。在植物中,表观遗传调控广泛存在,并在植物响应外界环境、调控生长发育可塑性等方面发挥着重要作用。近年来随着高通量测序技术的发展,表观基因组调控谱图逐渐展现在人们面前 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26刘西岗研究组在染色质高级结构调控花分生组织活性的分子机制解析中取得新进展
高等植物的所有组织和器官均来源于分生组织,WUCHEL基因是植物分生组织的维持和终止的关键基因。WUS的表达调控是一个复杂的网络,但对其具体的调控机制还很不清楚。越来越多的研究表明,染色质的高级结构对调控基因的表达具有重要作用。 中国科学院遗传与发育生物学研究所农业资源研究中心刘西岗研究组以拟南芥花 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26小麦醇溶蛋白染色体位点结构与功能研究以及育种应用价值分析获得新进展
醇溶蛋白及其同源物广泛存在于禾本科植物种子中,是水稻、小麦、玉米等作物籽粒加工与营养品质的一个重要决定因素。在六倍体普通小麦,醇溶蛋白基因以多拷贝方式存在于六个复杂的染色体位点(Gli-A1, B1, D1, A2, B2 & D2),其积累量一般占籽粒总蛋白含量的40-50%,对面筋、面团的功能以 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李家洋研究组应邀在《植物生物学年鉴》杂志撰写“植物株型的遗传调控机制”综述文章
高等植物株型形成是指在植物整个生长发育过程中与植株形态相关器官的发生,尤其是指分枝、叶片和花器官的形成、形状与着生位置等。植物株型的形成过程主要受遗传与植物激素等内在因素的调控,同时还受光周期、温度、水肥等外界环境因素的影响。高等植物株型形成的分子机理是植物生长发育研究的基本科学问题,具有重要的理论 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26中科院遗传发育所在水稻氮高效利用研究中取得系列突破性进展
氮元素是所有有机体的必需营养成分,是蛋白质、核酸以及植物中叶绿素等有机大分子的基本组成元素。在作物生产中,是决定生物量和产量的核心因素之一。氮肥的使用为作物增产起到了巨大的推动作用。但氮肥的大量施用不仅增加了农业生产成本,而且导致了包括气候变化、土壤酸化及水体富营养化等一系列环境问题。在农业生产上, ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26中英合作研究首次揭示水稻体内mRNA二级结构组
RNA是生命信息传递的核心成员之一,在生物体内通过形成复杂的二级结构及更高级的空间结构来行使其生物学功能。除了我们熟知的非编码RNA具有独特且稳定的RNA二级结构来参与可变剪切、翻译等生物学过程,目前越来越多的研究表明,mRNA二级结构也在mRNA转录后和翻译调控过程中发挥着重要作用。但是,解析体内 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26异染色质调控因子Dbp3-Dbp4的结构-功能研究
染色质(chromatin)是遗传物质的载体,通常是指细胞分裂间期细胞核内由DNA、组蛋白、非组蛋白等组成的线性复合体结构,可分为常染色质与异染色质。常染色质折叠程度低,处于伸展状态,转录活跃;而异染色质压缩紧实,转录不活跃。压缩紧密的异染色质需要在复制叉前先解螺旋,然后进行DNA复制,表观遗传标记 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26钱文峰研究组发现遗传互作网络对染色体上基因顺序的决定作用
真核生物基因在染色体上的呈线性排列。在多个物种中均有报道指出,基因的排列顺序不是完全随机的。然而基因有序排列的进化机制仍不明确。 中国科学院遗传与发育生物学研究所钱文峰研究组根据进化理论模型推测遗传互作网络是影响基因排列顺序的重要因素。研究者对基因顺序的形成进行了进化模拟计算,并对酵母遗传互作网络 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26大豆重要性状遗传网络解析取得重要进展
不同复杂性状间的耦合是分子设计育种的关键科学问题。作物的产量、品质等大都是多基因控制的复杂性状,由于受到一因多效和遗传连锁累赘的影响,使某些性状在不同材料和育种后代中协同变化,呈现耦合性相关。解析复杂性状间耦合的遗传调控网络,明确关键调控单元,对分子设计育种具有重要意义。大豆原产中国,是人类和动物油 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26