氮元素是所有有机体的必需营养成分,是蛋白质、核酸以及植物中叶绿素等有机大分子的基本组成元素。在作物生产中,是决定生物量和产量的核心因素之一。氮肥的使用为作物增产起到了巨大的推动作用。但氮肥的大量施用不仅增加了农业生产成本,而且导致了包括气候变化、土壤酸化及水体富营养化等一系列环境问题。在农业生产上,过度施用氮肥还会导致作物“贪青晚熟”(开花和成熟延迟),不仅影响(双季或三季中)后茬作物的播种,而且在高纬度地区,还可能由于后期温度较低而影响作物灌浆,导致作物产量的大幅降低。因此,提高作物氮肥利用效率同时避免“贪青晚熟”是作物氮利用改良研究中的重大科学问题。
在植物中,豆科类等植物能够通过生物固氮将无机氮转化为有机氮供植物利用。对大多数非豆科植物,氮的吸收利用主要包括3个重要环节:通过根部细胞膜定位的转运蛋白从土壤环境中吸收转运硝酸盐、氨等无机氮、在体内将无机氮转化为可被植物利用的氨基酸等有机氮(即氮同化过程)、以及将衰老组织器官中的大分子含氮有机物转化为小分子氮化合物并运送到新生组织器官中(例如种子)。科学家们过去几十年的研究对上述过程有了基本的认识,但对调控氮代谢和氮利用的分子机理了解很少。
水稻是世界上最重要的粮食作物,全球超过1/2的人口以稻米为主食,其中约90%水稻在亚洲种植消费。水稻氮高效利用的分子机理的研究不仅具有重大的理论价值,也是生产实践中面临的重大科学问题。针对这一重大科学问题,中国科学院遗传与发育生物学研究所组织所属三个国家重点实验室的相关科研团队进行联合攻关,在水稻氮高效利用研究领域取得了系统性的重要成果。植物基因组国家重点实验室储成才研究组发现籼稻品种利用硝酸盐的能力显著高于粳稻品种,并证明编码硝酸盐转运蛋白基因OsNRT1.1B的单碱基变异是导致粳稻与籼稻间氮肥利用效率差异的重要因素之一(Hu et al., Nature Genetics, 2015)。植物细胞与染色体工程国家重点实验室傅向东研究组发现水稻DEP1基因直接调控氮肥利用效率(Sun et al., Nature Genetics, 2014)。在上述研究工作的基础上,研究团队最近在相关领域又取得了突破性进展。
储成才研究组前期研究硝酸盐转运蛋白基因OsNRT1.1B的基础上,对其同源基因OsNRT1.1A的功能进行了进一步探索。亚细胞定位分析显示,OsNRT1.1B主要定位于细胞膜,而OsNRT1.1A主要定位于液泡膜;OsNRT1.1B受硝酸盐诱导,而OsNRT1.1A受铵盐诱导。进一步功能研究表明,OsNRT1.1B主要参与水稻对外界硝酸盐刺激的初级应答反应,而OsNRT1.1A则参与水稻对细胞内硝酸盐及铵盐利用的调节。由于硝态氮和铵态氮是植物利用氮的两种主要形式。水稻作为水生植物,铵态氮是其主要利用方式。水稻OsNRT1.1A的这种功能分化对其环境适应性具有重要意义。
值得指出的是,在北京、长沙及海南等多年多点的田间试验表明,OsNRT1.1A过表达植株在高氮和低氮条件下均表现出显著的增产效果。尤其在低氮条件下,OsNRT1.1A过表达株系小区产量以及氮利用效率最高可提高至60%, 且在高氮条件下可提早开花2周以上,从而有效缩短了水稻成熟时间。该研究成果为培育兼具高产与早熟品种,克服农业生产中高肥导致的“贪青晚熟”问题提供了解决方案,具有巨大的应用潜力。该项成果于2月24日在Plant Cell杂志在线发表,并被该刊作为该期的精品论文推送。
与此同时,植物基因组国家重点实验室左建儒研究员、李家洋院士、分子发育国家重点实验室陈凡研究员与中国水稻所钱前研究员、山东省农科院谢先芝研究员等团队合作,于2月21日在Nature Communications杂志报道鉴定了一个调控氮利用效率的基因ARE1,发现其通过调控氮利用效率提高水稻产量的遗传学机制。
该团队前期的工作发现,氮同化的一个关键酶谷氨酸合成酶基因的突变导致氮缺乏综合征(Yang et al., Molecular Plant, 2016)。在后续研究中,团队科研人员发现are1突变可以部分抑制谷氨酸合成酶基因突变导致的氮缺乏综合征表型。分子遗传学研究发现这种氮缺乏综合征的抑制效应是由一个高度保守基因ARE1的突变(即are1突变)导致。are1变异具有延缓水稻植株衰老和耐受氮饥饿的特征,在低氮肥施用条件下(约正常施氮量的50%)具有较高的氮素利用效率,因而提高10%-20%的产量。对2155份水稻材料基因组的分析发现,在部分18%籼稻品种和48% aus (一类主要种植在南亚土壤贫瘠地区的品种)中,ARE1启动子中都有一段小的插入片段,导致ARE1的表达降低,而ARE1表达量的降低与产量直接相关。因此,ARE1是一个氮利用效率的重要调控基因,对减少氮肥施用和提高水稻产量具有重要应用前景。
最近数年,中国科学院遗传与发育生物学研究所及其所属三个国家重点实验室的水稻氮高效研究团队获得了系统性的成果,在国际相关领域引起了广泛关注。在团队联合攻关的基础上形成了以储成才研究员为学术带头人、左建儒研究员等为学术骨干的科技部“资源高效利用水稻的分子设计”创新团队,旨在系统深入研究水稻氮高效、光合高效等重大科学问题。我们期待团队成员在相关领域取得的更多突破性进展,为分子设计主导的新绿色革命做出原创性的科学贡献。
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中科院遗传发育所在水稻氮高效利用研究中取得系列突破性进展
本站小编 Free考研/2020-05-26
相关话题/植物 作物
李云海研究组发现了植物器官大小调控的新机制
植物拟分生细胞(meristemoid cells)是具有干细胞活性的一类细胞,分布在分化和扩展的叶子表皮等细胞之间。在拟南芥的叶片中,有大约一半的表皮细胞来源于拟分生细胞,因此拟分生细胞的增殖对于叶片大小有重要的影响。目前,对于拟分生细胞调控植物器官大小的分子机理尚不清楚。在前期研究中,中国科学院 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26刘西岗研究组在植物激素调控花分生组织维持及分化的分子机制解析中取得新进展
高等植物中,植物体所有胚后发育的组织和器官都来源于各级分生组织。花分生组织(floral meristem, FM)产生及维持是花器官生成及发育的前提,而FM活性的程序性终止(FM determinacy)导致的细胞分化是后续的生殖生长及世代交替的保证,在实际应用中能够保证农作物的产量。分生组织的维 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26植物激素分析平台在内源油菜素甾醇分析方法研究中取得新进展
油菜素甾醇(brassinosteroids, BRs)是继生长素、赤霉素、细胞分裂素、脱落酸和乙烯之后发现的第六大类植物激素,参与调控植物细胞的伸长与分裂、维管束分化、花粉发育和育性、植株衰老以及植物抗逆反应等一系列重要的生理过程。由于其含量低、基质复杂、质谱离子化效率低等因素,内源性BRs的准确 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26韩方普研究组在植物染色体组蛋白磷酸化研究取得进展
组蛋白磷酸化修饰与着丝粒功能的建立、维持相关(Dong and Han. 2012)。 本实验室从2010年开始从事玉米、小麦H2A和H3的磷酸化修饰与染色体取向、分离等功能研究。由于植物染色体的复杂性及特殊性,一直得到部分不同于酵母及人类的结果。 H2A磷酸化激酶Bub1的定位及细胞周期变化,结合 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组发现植物激素“核受体”作用机理
激素调控植物生长发育和对环境适应性的方方面面。传统认为,植物激素的受体定位于细胞膜上。但最近的研究表明,茉莉酸、生长素等激素的受体却定位于细胞核中,这非常类似于动物激素的“核受体”。目前,人们对于植物激素“核受体”的生理意义及作用机理尚所知甚少。 茉莉酸是来源于不饱和脂肪酸的植物激素,主要调控植物 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26单细胞转录组学研究揭示植物中存在着广泛的单等位基因表达
单等位基因表达(monoallelic gene expression)是指在二倍体生物的细胞中一个基因的全部转录本均来自一个等位基因的现象。群体水平的细胞表达谱分析(bulk analysis)表明,印记效应与等位基因间的相互抑制作用是产生单等位基因表达的两种可能的机制。由于群体水平的分析可能低估 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26陈受宜和张劲松研究组发现组蛋白密码的“阅读者”调控植物耐逆的分子机制
中国科学院遗传与发育生物学研究所陈受宜和张劲松研究组从大豆中鉴定出一个特殊的PHD锌指蛋白——GmPHD6。它属于PHD中的Alfin亚类,Alfin亚类遍具有转录抑制能力,而GmPHD6例外。该研究发现GmPHD6必须与LHP1(类异染色质蛋白)相互作用,并依赖LHP1的转录激活能力,调控下游耐盐 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26左建儒研究组等在蛋白质翻译后修饰调控植物胁迫反应研究中取得新进展
甲基化修饰与一氧化氮(nitric oxide; NO)依赖的亚硝基化修饰是高度保守的蛋白质翻译后修饰,这两类修饰参与调控众多生物学过程,包括调控非生物胁迫反应。但二者调控非生物胁迫的分子机制不甚清楚。 中国科学院遗传与发育生物学研究所左建儒研究组在亚硝基化蛋白质组学研究中发现拟南芥蛋白质精氨酸甲 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26王国栋研究组在植物NAD补救合成途径解析和进化研究方面取得新进展
NAD (尼克酰胺腺嘌呤二核苷酸) 作为电子传递载体(辅酶)参与众多的氧化还原反应而为广大研究人员所熟知。在植物NAD补救合成途径中(Preiss-Handler途径),特异性存在尼克酸(nicotinate,NA)和多种NA的衍生物(糖基化,甲基化等),但迄今为止,关于NA衍生物在植物代谢中的分子 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26吕东平研究组在细菌中实现了植物泛素化途径的重建
泛素化是一种重要的真核生物蛋白质翻译后修饰方式,它决定了被修饰蛋白的命运。泛素化的过程分为三步系列的酶促反应,分别由E1、E2、和E3来催化,并最终使泛素共价地结合到了底物蛋白上。通常来讲,整个泛素化途径至少需要五个蛋白的参与:泛素单体、E1、E2、E3和底物蛋白。 中国科学院遗传与发育生物学 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26