植物固着生长并通过协调生长发育过程和抗性反应从而应对环境变化带来的胁迫与损伤。植物受到由生物或非生物胁迫引起的物理伤害以后,可以通过激活生长过程完成组织和器官再生。然而,人们尚不清楚植物遭受机械损伤以后激活器官再生的分子机理。
在特定逆境胁迫下,植物通过茉莉酸途径抑制主根生长而促进侧根发生(Sun et al., 2009, Plant Cell; Chen et al., 2011, Plant Cell)。中国科学院遗传与发育生物学研究所李传友研究组前期的研究发现,在这些生理过程的背后,茉莉酸途径的核心转录因子MYC2直接调控干细胞转录因子PLT1/2的表达,进而激活干细胞组织中心(静止中心)的细胞分裂活性 (Chen et al., 2011, Plant Cell),从而调控根系的适应性生长。最近,他们与荷兰瓦赫宁根大学Ben Scheres教授团队的合作研究发现,损伤诱导的茉莉酸信号可以激活干细胞并促进再生。他们的研究表明,茉莉酸通过调控RBR-SCR分子网络和胁迫响应基因ERF115的表达从而激活根干细胞组织中心的活性。同时,位于ERF115上游由茉莉酸信号诱导表达的ERF109可以激活CYCD6;1转录,从而促进再生。进一步研究结果表明,来自土壤的机械胁迫以及线虫侵害能够激活茉莉酸介导的再生反应。
这一突破性研究揭示了损伤诱导的茉莉酸信号促进再生过程的分子调控网络,解析了植物如何平衡生长发育、抗性反应和机体修复之间的关系。该研究已于2019年04月04日在Cell杂志上线发表(DOI:10.1016/j.cell.2019.03.006)。Ben Scheres研究组的博士后周文焜(原李传友研究组博士生)是该论文的第一作者。该研究得到科技部重大科学研究计划项目的资助。
图: 茉莉酸信号介导根干细胞激活和促进再生的分子机理
删除或更新信息,请邮件至freekaoyan#163.com(#换成@)
中荷科学家发现茉莉酸调控根器官再生的机理
本站小编 Free考研/2020-05-26
相关话题/植物 信号
曹晓风研究组在组蛋白修饰动态调控植物光温响应研究中取得新进展
植物开花时间受到复杂多变的环境信号调控,其中光周期和温度是影响开花的关键因素。光周期和温度通过遗传和表观遗传机制调控开花途径整合子因子FLOWERING LOCUS T (FT)表达最终影响植物开花。表观遗传修饰在调节植物的生长发育和环境响应等方面发挥了重要作用,主要包括DNA甲基化、组蛋白变体与修 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26储成才研究组揭示植物硝酸盐信号传导通路和氮磷营养平衡分子机制
硝酸盐(nitrate)不仅是植物最主要的无机氮源,还作为信号分子激活一系列基因表达,触发硝酸盐应答反应,进而促进氮高效利用。细胞膜定位的硝酸盐转运蛋白NRT1.1(拟南芥AtNRT1.1和水稻NRT1.1B)作为硝酸盐受体(sensor),可以感知外界硝酸盐信号并触发下游应答基因表达。然而,长期以 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李云海研究组应邀在Annual Review of Plant Biology撰写植物种子大小研究综述
植物种子大小是重要的产量性状,种子大小的调控也是重要的发育生物学问题。因此,解析种子大小调控的分子机制,可以为作物的高产育种提供理论基础和基因资源。近年来植物种子大小的调控机制研究进展迅速,目前已成为植物领域研究的热点和前沿。 中国科学院遗传与发育生物学研究所李云海研究组长期致力于植物种子大小调控的 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26中英科学家合作破译模式植物金鱼草的基因组
金鱼草(Antirrhinum majus L.)也称龙头花(snapdragon),车前科多年生草本植物,因花似金鱼或龙头而得名,是常见的盆栽、切花及庭院观赏的园艺花卉,在古罗马时代就已完成了驯化。在过去的三十年中,金鱼草一直作为分子和发育遗传学的模式作物,很多关键基因是在金鱼草中被首次发现,包括 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26李传友研究组揭示MYC2调控茉莉酸信号终止的机制
作为一种重要的植物激素,茉莉酸调控植物的防御反应和适应性生长。当植物遭遇病虫侵害或其它逆境胁迫时,活性茉莉酸被受体COI1 (CORONATINE-INSENSITIVE 1) 识别而释放核心转录因子MYC2的活性,MYC2与转录中介体亚基MED25形成功能复合物而在全基因组范围内激活茉莉酸响应基因 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26杨维才研究组揭示调控植物TGN形成的分子机制
高尔基体不仅是细胞内膜系统膜泡运输的核心,而且也是细胞壁和胞外基质多糖、质膜糖脂合成、以及蛋白糖基化修饰的位点。不同于动物细胞,植物细胞高尔基体产生一个分离的、独立完成不同功能的反面管网结构TGN(Trans-Golgi Network),专门负责分选和分泌来自反面膜囊的物质。同时,TGN兼任了早胞 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26程祝宽研究组在植物减数胞质分裂调控机制研究中取得新进展
有丝分裂过程中,植物的胞质分裂与其它生物由外而内的胞质分裂方式不同,它的细胞板由内而外延伸,最终将细胞质分离。然而对于植物花粉母细胞减数分裂过程中,胞质分裂调控的分子机制还很少了解。 中国科学院遗传与发育生物学研究所程祝宽研究组在水稻中鉴定出一个调控花粉母细胞胞质分裂的蛋白DCM1(Defecti ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组建立了植物高特异性抵御DNA病毒新方法
双生病毒(Geminiviruses)是存在于植物中唯一一类具有孪生颗粒形态的单链DNA病毒,也是目前已知的最大的单链DNA病毒家族。据ICTV(International Committee on Taxonomy of Viruses)报道该类病毒目前已增至九个属,其在单子叶和双子叶植物中具有广 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26谢旗研究组发现植物26S蛋白酶体组装参与盐胁迫应答的新机制
26S蛋白酶体系统通过有效降解许多关键蛋白因子而调控植物的生长发育和对环境胁迫的响应。26蛋白酶体系统由20S蛋白酶体和19S蛋白酶体两个亚复合物组成。20S蛋白酶体由多个α亚基和β亚基按照α1-7/β1-7/β1-7/α1-7方式组装成一个中空的圆柱体结构。其亚基的突变与人类许多疾病的产生密切相关 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26高彩霞研究组建立植物基因组高效C-T单碱基编辑新系统
单碱基编辑技术(Base editor)是基于CRISPR系统的新型靶基因定点修饰技术,在不产生DNA双链断裂的情况下,利用胞嘧啶脱氨酶或人工进化的腺嘌呤脱氨酶对靶位点进行精准的单碱基编辑,从而实现C-T或A-G的替换。目前, 基于融合大鼠胞嘧啶脱氨酶APOBEC1的BE3介导的C-T碱基编辑技术已 ...中科院遗传与发育生物学研究所 本站小编 Free考研 2020-05-26