circRNA on animal skeletal muscle development regulation
Ting Zheng1, Mailin Gan1, Linyuan Shen1, Lili Niu1, Zongyi Guo2, Jinyong Wang2, Shunhua Zhang,1, Li Zhu,1 1. College of Animal Science and Technology, Sichuan Agricultural University, Chengdu 611130, China 2. ChongQing Academy of Animal Sciences, Rongchang 402460, China
Supported by the National Natural Science Foundation of China No.31972524 Sichuan Pig Innovation Team Project of National Modern Agricultural Industrial Technology System.SCSZTD-3-008 the Science and Technology Program of Sichuan Province No.2016NYZ0050
作者简介 About authors 郑婷,在读硕士研究生,专业方向:动物遗传育种。E-mail:741377392@qq.com。
Abstract Circular RNA (circRNA) is a type of closed circular RNA molecules formed by reverse splicing, which exists widely in organisms and has become a research hotspot in non-coding RNAs in recent years. Skeletal muscle plays the role of coordinating movement and maintaining normal metabolism and endocrine in organisms. With the development of sequencing and bioinformatics analysis technology, the functions and regulation mechanisms of circRNAs in skeletal muscle development have been gradually revealed. In this review, we summarize the types of molecular regulatory mechanisms, the classical research ideas and the functional research methods of circRNAs, and the research progress of circRNAs involved in normal development of skeletal muscle and regulation of skeletal muscle disease, in order to provide a reference to further study of the genetic mechanisms of circRNAs in the regulation of skeletal muscle development. Keywords:circRNA;skeletal muscle development;skeletal muscle diseases;RNA-seq
这类circRNA含有miRNA结合位点,能竞争性吸附miRNA进而调控miRNA下游靶mRNA表达(图1E)。在生物体中这类circRNA大多是由外显子剪接而成的ecircRNA。现已发现相当数量的竞争性内源circRNA,如Hansen等[23]在人(Homo sapiens)和小鼠(Mus musculus)脑组织中发现一种高表达的circCDS1as,含有至少70个miR-7的结合位点,间接调控相关靶基因表达;由性别决定基因Sry (sex- determining region Y)剪接形成的circRNA Sry含有至少16个miR-138结合位点,作为miR-138分子海绵发挥调控作用[23]。
1.2.2 circRNA调控亲本基因转录
细胞核中的ciRNAs能够与RNA聚合酶II (RNA polymerase II, Pol II)相互作用,从而促进其自身编码基因的转录(图1D),如在人细胞中首次发现的ciRNA (ci-ankrd52),在亲本基因转录位点上大量积累,发挥顺式调控作用[15]。此外,EIciRNAs能够与Pol II和U1小核核糖核蛋白(U1 small nuclear ribonucleoproteins, snRNP)结合,促进其亲本基因的转录(图1D),如Li等[16]发现的一种EIciRNA (circPAIP2)。
A:外显子剪接形成的ecircRNA;B:既含外显子又含内含子的EIciRNA;C:内含子剪接形成的ciRNA;D:circRNA调控亲本基因转录;E:circRNA竞争性结合miRNA;F:circRNA与RBPs互作;G:circRNA自身翻译蛋白质;H:circRNA作为蛋白质支架,促进酶及其底物的共域化。参考文献[12,20~22]总结绘制。 Fig. 1The synthesis and biological functions of circRNA
circRNA-miRNA-mRNA在骨骼肌发育过程中的调控网络图,circRNA参与调控骨骼肌卫星细胞活化、成肌细胞增殖以及成肌细胞分化为肌管的生理过程。 Fig. 2The role of circRNA in the processes of skeletal muscle proliferation and differentiation
Table 1 Table 1circRNAs involved in the regulation of skeletal muscle development in different animals
除此之外,还有研究揭示了circRNA对骨骼肌生长发育的其他调控机制。2017年,Legnini等[28]首次利用测序数据筛选出通过参与蛋白质编码发挥调控作用的circRNA,将其命名为circZNF609。circZNF609在人和小鼠中有较高同源性,反向剪接时形成了一个开放阅读框,能够在应激条件下被特殊翻译成蛋白质发挥作用,可能促进成肌细胞增殖。此外,Pandey等[85]发现circSamd4与PUR蛋白相结合,阻遏PUR蛋白对MHC(myosin heavy chain)基因转录的拮抗作用,从而促进成肌细胞分化,加快骨骼肌生长发育进程。这是首次发现circRNA通过与RBPs协同作用发挥对骨骼肌生长发育的调控作用。
另一种肌营养不良症为1型肌强直性营养不良(myotonic dystrophy type 1, DM1)是一种由肌强直性营养不良蛋白激酶(myotonic dystrophy protein kinase, DMD:杜氏肌营养不良;DM1:I型肌强直性营养不良;Sarcopenia:老年性肌肉衰减症;HCM:肥厚型心肌病;DCM:扩张型心肌病。DMPK)基因3′UTR的CTG重复扩增导致mRNA剪接异常的多系统疾病[101]。与在DMD患者来源成肌细胞中的结果相似,Czubak等[102]发现DM1肌肉组织或细胞中,circRNA也呈现特异性表达,还初步发现DM1疾病程度与circRNA可变剪接变化之间的关联,并且circRNA整体表达水平呈上调趋势,在疾病个体中circ CDYL、circHIPK3、circRTN4_03和circZNF609的环状/线性比均升高[28,103](表2)。目前需要对circRNA可变剪接相关疾病中大量表达的circRNA进行识别与鉴定,以突出其在发病机制中的作用,并开发未来的疾病治疗方法。
PedersenBK, FebbraioMA . Muscles, exercise and obesity: skeletal muscle as a secretory organ , 2012,8(8):457-465. [本文引用: 1]
ChalJ, PourquiéO . Making muscle: skeletal myogenesis in vivo and in vitro , 2017,144(12):2104-2122. [本文引用: 2]
ChargéSBP, RudnickiMA . Cellular and molecular regulation of muscle regeneration , 2004,84(1):209-238. [本文引用: 1]
EpsteinHF, FischmanDA . Molecular analysis of protein assembly in muscle development , 1991,251(4997):1039-1044. [本文引用: 1]
WrightWE, SassoonDA, LinVK . Myogenin, a factor regulating myogenesis, has a domain homologous to MyoD , 1989,56(4):607-617. [本文引用: 1]
RudnickiMA, BraunT, HinumaS, JaenischR . Inactivation of MyoD in mice leads to up-regulation of the myogenic HLH gene Myf-5 and results in apparently normal muscle development , 1992,71(3):383-390. [本文引用: 1]
WangYN . The roles of MEF2A in the regulation of skeletal muscle myoblasts proliferation and differentiation in Qinchuan beef cattle[Dissertation] Northwest A&F University, 2019. [本文引用: 1]
WhittemoreLA, SongK, LiXP, AghajanianJ, DaviesM, GirgenrathS, HillJJ, JalenakM, KelleyP, KnightA, MaylorR, O'haraD, PearsonA, QuaziA, RyersonS, TanXY, TomkinsonKN, VeldmanGM, WidomA, WrightJF, WudykaS, ZhaoL, WolfmanNM. Inhibition of myostatin in adult mice increases skeletal muscle mass and strength , 2003,300(4):965-971. [本文引用: 2]
BuckinghamM, RelaixF . The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions , 2007,23:645-673. [本文引用: 2]
LiXY, FuLL, ChengHJ, ZhaoSH . Advances on microRNA in regulating mammalian skeletal muscle development Hereditas(Beijing), 2017,39(11):1046-1053. [本文引用: 1]
ZhouR, WangYX, LongKR, JiangAA, JinL . Regulatory mechanism for lncRNAs in skeletal muscle development and progress on its research in domestic animals Hereditas(Beijing), 2018,40(4):292-304. [本文引用: 1]
LiangGM, YangYL, NiuGL, TangZL, LiK . Genome-wide profiling of Sus scrofa circular RNAs across nine organs and three developmental stages , 2017,24(5):523-535. [本文引用: 1]
ShuaiMX, HongJW, HuangDH, ZhangX, TianYQ . Upregulation of circRNA_0000285 serves as a prognostic biomarker for nasopharyngeal carcinoma and is involved in radiosensitivity , 2018,16(5):6495-6501. [本文引用: 1]
BiW, HuangJY, NieCL, LiuB, HeGQ, HanJH, PangR, DingZM, XuJ, ZhangJW . CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway , 2018,37(1):275. [本文引用: 1]
KristensenLS, AndersenMS, StagstedLVW, EbbesenKK, KjemsJ . The biogenesis, biology and characterization of circular RNAs , 2019,20(11):675-691. [本文引用: 1]
ChenLL . The expanding regulatory mechanisms and cellular functions of circular RNAs , 2020,21(8):475-490.
YangYB, GaoXY, ZhangML, YanS, SunCJ, XiaoFZ, HuangNN, YangXS, ZhaoK, ZhouHK, HuangSY, XieB, ZhangN . Novel role of FBXW7 circular RNA in repressing glioma tumorigenesis , 2018,110(3):304-315. [本文引用: 4]
LegniniI, Di TimoteoG, RossiF, MorlandoM, BrigantiF, SthandierO, FaticaA, SantiniT, AndronacheA, WadeM, LaneveP, RajewskyN, BozzoniI. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis , 2017, 66(1): 22-37.e29. [本文引用: 6]
ZengY, DuWW, WuYY, YangZG, AwanFM, LiXM, YangWN, ZhangC, YangQ, YeeA, ChenY, YangFH, SunH, HuangR, YeeAJ, LiRK, WuZK, BackxPH, YangBB . A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair , 2017,7(16):3842-3855. [本文引用: 1]
DuWW, FangL, YangWN, WuN, AwanFM, YangZG, YangBB . Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity , 2017,24(2):357-370. [本文引用: 1]
Van DijkEL, AugerH, JaszczyszynY, ThermesC . Ten years of next-generation sequencing technology , 2014,30(9):418-426. [本文引用: 1]
WangJ, RenQL, HuaLS, ChenJF, ZhangJQ, BaiHJ, LiHL, XuB, ShiZH, CaoH, XingBS, BaiXX . Comprehensive analysis of differentially expressed mRNA, lncRNA and circRNA and their ceRNA networks in the longissimus dorsi muscle of two different pig breeds , 2019,20(5):1107. [本文引用: 1]
DahlM, DaugaardI, AndersenMS, HansenTB, Gr?nb?kK, KjemsJ, KristensenLS . Enzyme-free digital counting of endogenous circular RNA molecules in B-cell malignancies , 2018,98(12):1657-1669. [本文引用: 1]
ZhangXO, DongR, ZhangY, ZhangJL, LuoZ, ZhangJ, ChenLL, YangL . Diverse alternative back-splicing and alternative splicing landscape of circular RNAs , 2016,26(9):1277-1287. [本文引用: 1]
SekarS, CuyuganL, AdkinsJ, GeigerP, LiangWS . Circular RNA expression and regulatory network prediction in posterior cingulate astrocytes in elderly subjects , 2018,19(1):340. [本文引用: 3]
ZhangQL, JiXY, LiHW, GuoJ, WangF, DengXY, ChenJY, LinLB . Identification of circular RNAs and their altered expression under poly(I:C) challenge in key antiviral immune pathways in amphioxus , 2019,86:1053-1057. [本文引用: 2]
SekarS, GeigerP, CuyuganL, BoyleA, SerranoG, BeachTG, Liang WS. Identification of circular RNAs using RNA sequencing , 2019, (153). [本文引用: 3]
?abajPP, LeparcGG, LinggiBE, MarkillieLM, WileyHS, KreilDP . Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling , 2011,27(13):i383-i391. [本文引用: 1]
LiSS, TengSS, XuJQ, SuGN, ZhangY, ZhaoJQ, ZhangSW, WangHY, QinWY, LuZJ, GuoY, ZhuQY, WangD . Microarray is an efficient tool for circRNA profiling , 2019,20(4):1420-1433. [本文引用: 1]
López-JiménezE, RojasAM, Andrés-LeónE . RNA sequencing and prediction tools for circular RNAs analysis , 2018,1087:17-33. [本文引用: 1]
GuanYJ, MaJY, SongW . Identification of circRNA- miRNA-mRNA regulatory network in gastric cancer by analysis of microarray data , 2019,19:183. [本文引用: 1]
XiongDD, DangYW, LinP, WenDY, HeRQ, LuoDZ, FengZB, ChenG . A circRNA-miRNA-mRNA network identification for exploring underlying pathogenesis and therapy strategy of hepatocellular carcinoma , 2018,16(1):220. [本文引用: 1]
ZhaiZS, FuQ, LiuCJ, ZhangX, JiaPC, XiaP, LiuP, LiaoSX, QinT, ZhangHW . Emerging roles of hsa-circ- 0046600 targeting the miR-640/HIF-1α signalling pathway in the progression of HCC , 2019,12:9291-9302. [本文引用: 1]
LiH, WeiXF, YangJM, DongD, HaoD, HuangYZ, LanXY, PlathM, LeiCZ, MaY, LinFP, BaiYY, ChenH . CircFGFR4 promotes differentiation of myoblasts via binding miR-107 to relieve its inhibition of Wnt3a , 2018,11:272-283. [本文引用: 1]
ChenB, YuJ, GuoLJ, ByersMS, WangZJ, ChenXL, XuHP, NieQH . Circular RNA circHIPK3 promotes the proliferation and differentiation of chicken myoblast cells by sponging miR-30a-3p , 2019,8(2):177. [本文引用: 1]
ShenXM, ZhangXY, RuWX, HuangYZ, LanXY, LeiCZ, ChenH. circINSR promotes proliferation and reduces apoptosis of embryonic myoblasts by sponging miR-34a , 2020,19:986-999. [本文引用: 2]
HuangSL, LiXZ, ZhengH, SiXY, LiB, WeiGQ, LiCL, ChenYJ, ChenYM, LiaoWJ, LiaoYL, BinJP . Loss of super-enhancer-regulated circRNA Nfix induces cardiac regeneration after myocardial infarction in adult mice , 2019,139(25):2857-2876. [本文引用: 1]
StothardP . The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences Biotechniques 2000,28(6):1102,1104. [本文引用: 1]
ZhaoJ, WuJ, XuTY, YangQC, HeJH, SongXF . IRESfinder: Identifying RNA internal ribosome entry site in eukaryotic cell using framed k-mer features , 2018,45(7):403-406. [本文引用: 1]
WeiLY, ChenHR, SuR . M6APred-EL: a sequence- based predictor for identifying N6-methyladenosine sites using ensemble learning , 2018,12:635-644. [本文引用: 1]
IngoliaNT, GhaemmaghamiS, NewmanJRS, WeissmanJS . Genome-wide analysis in vivo of translation with nucleotide resolution using ribosome profiling , 2009,324(5924):218-223. [本文引用: 1]
ZhangML, ZhaoK, XuXP, YangYB, YanS, WeiP, LiuH, XuJB, XiaoFZ, ZhouHK, YangXS, HuangNN, LiuJL, HeKJ, XieKP, ZhangG, HuangSY, ZhangN . A peptide encoded by circular form of LINC-PINT suppresses oncogenic transcriptional elongation in glioblastoma , 2018,9(1):4475. [本文引用: 1]
ZhangML, HuangNN, YangXS, LuoJY, YanS, XiaoFZ, ChenWP, GaoXY, ZhaoK, ZhouHK, LiZQ, MingL, XieB, ZhangN . A novel protein encoded by the circular form of the SHPRH gene suppresses glioma tumorigenesis , 2018,37(13):1805-1814. [本文引用: 2]
LingYH, ZhengQ, ZhuL, XuLN, SuiMH, ZhangYH, LiuY, FangFG, ChuMX, MaYH, ZhangXR . Trend analysis of the role of circular RNA in goat skeletal muscle development , 2020,21(1):220. [本文引用: 3]
WeiXF, LiH, YangJM, HaoD, DongD, HuangYZ, LanXY, PlathM, LeiCZ, LinFP, BaiYY, ChenH . Circular RNA profiling reveals an abundant circLMO7 that regulates myoblasts differentiation and survival by sponging miR-378a-3p , 2017,8(10):e3153. [本文引用: 3]
XieYQ, ChenT, LuoJY, XiQY, ZhangYL, SunJJ . Mechanism of circRNA and its effect on development of animal muscles Chin Anim Husb Vet Med, 2018,45(8):2270-2275. [本文引用: 1]
WangXG, CaoXK, DongD, ShenXM, ChengJ, JiangR, YangZX, PengSJ, HuangYZ, LanXY, ElnourIE, LeiCZ, ChenH . Circular RNA TTN acts as a miR-432 sponge to facilitate proliferation and differentiation of myoblasts via the IGF2/PI3K/AKT signaling pathway , 2019,18:966-980.
YaoR, YaoY, LiCY, LiXY, NiW, QuanRZ, LiuL, LiHX, XuYR, ZhangMD, UllahY, HuSW . Circ-HIPK3 plays an active role in regulating myoblast differentiation , 2019,155:1432-1439.
YueBL, WangJ, RuWX, WuJY, CaoXK, YangHY, HuangYZ, LanXY, LeiCZ, HuangBZ, ChenH . The circular RNA circHUWE1 sponges the miR-29b-AKT3 axis to regulate myoblast development , 2020,19:1086-1097.
ShenLY, GanML, TangQZ, TangGQ, JiangYZ, LiMZ, ChenL, BaiL, ShuaiSR, WangJY, LiXW, LiaoK, ZhangSH, ZhuL . Comprehensive analysis of lncRNAs and circRNAs reveals the metabolic specialization in oxidative and glycolytic skeletal muscles , 2019,20(12):2855. [本文引用: 1]
LiBJ, YinD, LiPH, ZhangZK, ZhangXY, LiHQ, LiRY, HouLM, LiuHL, WuWJ . Profiling and functional analysis of circular RNAs in porcine fast and slow muscles , 2020,8:322. [本文引用: 1]
FengJ, ChenK, DongX, XuXL, JinYX, ZhangYX, ChenWB, HanYJ, ShaoL, GaoY, HeCJ . Genome- wide identification of cancer-specific alternative splicing in circRNA , 2019,18(1):35. [本文引用: 1]
KristensenLS, HansenTB, Ven?MT, KjemsJ . Circular RNAs in cancer: opportunities and challenges in the field , 2018,37(5):555-565. [本文引用: 1]
JeckWR, SorrentinoJA, WangK, SlevinMK, BurdCE, LiuJZ, MarzluffWF, SharplessNE . Circular RNAs are abundant, conserved, and associated with ALU repeats , 2013,19(2):141-157. [本文引用: 1]
SuzukiH, AokiY, KameyamaT, SaitoT, MasudaS, TanihataJ, NagataT, MayedaA, TakedaSI, TsukaharaT . Endogenous multiple exon skipping and back-splicing at the DMD mutation hotspot , 2016,17(10):1722. [本文引用: 2]
LegniniI, Di TimoteoG, RossiF, MorlandoM, BrigantiF, SthandierO, FaticaA, SantiniT, AndronacheA, WadeM, LaneveP, RajewskyN, BozzoniI. Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis , 2017, 66(1): 22-37.e9. [本文引用: 1]
KhanMaF, ReckmanYJ, AufieroS, Van Den HoogenhofMMG, Van Der MadeI, BeqqaliA, KoolbergenDR, RasmussenTB, Van Der VeldenJ, CreemersEE, PintoYM . RBM20 regulates circular RNA production from the titin gene , 2016,119(9):996-1003. [本文引用: 1]
ShiehPB . Emerging strategies in the treatment of duchenne muscular dystrophy , 2018,15(4):840-848. [本文引用: 1]
SuronoA, TakeshimaY, WibawaT, IkezawaM, NonakaI, MatsuoM . Circular dystrophin RNAs consisting of exons that were skipped by alternative splicing , 1999,8(3):493-500. [本文引用: 1]
AokiY, YokotaT, NagataT, NakamuraA, TanihataJ, SaitoT, DuguezSMR, NagarajuK, HoffmanEP, PartridgeT, TakedaSI . Bodywide skipping of exons 45-55 in dystrophic mdx52 mice by systemic antisense delivery , 2012,109(34):13763-13768. [本文引用: 1]
CazzellaV, MartoneJ, PinnaròC, SantiniT, TwayanaSS, SthandierO, D'amicoA, RicottiV, BertiniE, MuntoniF, BozzoniI,. Exon 45 skipping through U1-snRNA antisense molecules recovers the Dys-nNOS pathway and muscle differentiation in human DMD myoblasts , 2012,20(11):2134-2142. [本文引用: 1]
SongZB, LiuYM, FangXB, XieMS, MaZY, ZhongZG, FengXL, ZhangWX . Comprehensive analysis of the expression profile of circRNAs and their predicted protein-coding ability in the muscle of mdx mice , 2020,20(3):397-407. [本文引用: 1]
WengJ, ZhangPX, YinXF, JiangBG . The whole transcriptome involved in denervated muscle atrophy following peripheral nerve injury , 2018,11:69. [本文引用: 1]
FuYH, PizzutiA, FenwickRG, KingJ, RajnarayanS, DunnePW, DubelJ, NasserGA, AshizawaT, De JongP . An unstable triplet repeat in a gene related to myotonic muscular dystrophy , 1992,255(5049):1256-1258. [本文引用: 1]
CzubakK, TaylorK, PiaseckaA, SobczakK, KozlowskaK, PhilipsA, SedehizadehS, BrookJD, WojciechowskaM, KozlowskiP . Global increase in circular RNA levels in myotonic dystrophy , 2019,10:649. [本文引用: 1]