Human facial shape related SNP analysis in Han Chinese populations
Ming Liu1,2, Yi Li3, Yafang Yang2,4, Yuwen Yan2, Fan Liu3, Caixia Li2, Faming Zeng,1,5, Wenting Zhao,2 1. School of Forensic Medicine, Kuming Medical University, Kunming 650500, China 2. National Engineering Laboratory for Forensic Science, Key Laboratory of Forensic Genetics of Ministry of Public Security, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China 3. CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Science, Beijing 100101, China 4. School of Forensic Medicine, Shanxi Medical University, Taiyuan 030001, China 5. Criminal Investigation Police Corps, Yunnan Provincial Public Security Department, Kunming 650021, China
Supported by the National Key R&D Program of China No.2017YFC0803501 Central Public-Interest Scientific Institution Basal Research Fund No.2018JB046 Central Public-Interest Scientific Institution Basal Research Fund (No. 2018JB046), and the National Science and Technological Resources Platform Nos.YCZYPT[2017]01-3 Central Public-Interest Scientific Institution Basal Research Fund (No. 2018JB046), and the National Science and Technological Resources Platform Nos.2017JB025
作者简介 About authors 刘明,在读硕士研究生,专业方向:法医物证学。E-mail:mingliu2019@foxmail.com。
Abstract Human facial morphology is one of the important visible biological characteristics. Understanding the genetic basis underlying facial shape traits has important implications in population genetics, developmental biology, and forensic science. This study extracted 136 Euclidean distance phenotypes from 17 facial features of high-resolution 3D facial images in 1177 Chinese Han adult males. Based on 3× low-depth sequencing data, linear regression was used to analyze the correlation between 125 reported SNPs significantly associated with facial morphology and 136 facial phenotypes. As a result, a total of twelve SNPs from ten genes demonstrated significant association with one or more facial shape traits after adjusting for multiple testing (significance threshold P < 1.35 × 10 -3 ), together explaining up to 3.89% of age-, and BMI-adjusted facial phenotype variance. These included TEX41 rs17479393, PAX3 rs974448, RAB7A/ACAD9 rs2977562, DCHS2 rs9995821, DCHS2 rs2045323, C5orf50 rs6555969, SUPT3H/RUNX2 rs1852985, MSRA rs11782517, EYA1 rs10504499, GSC rs2224309, DICER1 rs7161418 and DHX35 rs2206437.These results revealed the genetics basis of facial morphology of Han Chinese population, and provided reference data for DNA-based face prediction. Keywords:facial morphology;linear regression;Chinese Han population;facial feature associated SNPs
PDF (1772KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文 本文引用格式 刘明, 李祎, 杨亚芳, 晏于文, 刘凡, 李彩霞, 曾发明, 赵雯婷. 中国汉族人群脸部特征相关SNP位点研究. 遗传[J], 2020, 42(7): 680-690 doi:10.16288/j.yczz.19-355 Ming Liu. Human facial shape related SNP analysis in Han Chinese populations. Hereditas(Beijing)[J], 2020, 42(7): 680-690 doi:10.16288/j.yczz.19-355
Fig. 1Positions and definitions of the 17 facial landmarks
1.5 基因分型
使用Illumina HiSeq X Ten测序平台(Illumina,美国)对样本进行3×低深度全基因组测序,每个样本得到平均10G 原始数据(Raw data)。对经过变异检测(Variant calling)处理后的数据,使用本实验室中国人群低深度测序2510份样本进行基因填补(imputation)。SNP质控筛除标准为:分型成功率< 0.97,哈德-温伯格平衡P<0.0001,和低频等位基因频率(MAF<0.001)。本研究中共有22,380,933个常染色体基因分型通过质检。
1.6 统计学分析
(1)利用一般线性回归模型(general linear model, GLM)进行125个SNP位点与各表型的关联分析。基因型的赋值按照加性模型,校正体重指数(body mass index, BMI)和年龄、基因组前5个主成分影响的表型差异。本研究使用基于加性模型假设的一般线性回归模型,如公式(1)所示:
Martínez-AbadíasN, EsparzaM, Sj?voldT, González- JoséR, SantosM, HernándezM . Heritability of human cranial dimensions: comparing the evolvability of different cranial regions , 2009,214(1):19-35. [本文引用: 1]
WeinbergSM, ParsonsTE, MarazitaML, MaherBS . Heritability of face shape in twins: a preliminary study using 3D stereophotogrammetry and geometric morphometrics , 2013,1(1):14. [本文引用: 1]
NgMCY, GraffM, LuY, LuY, JusticeAE, MudgalP, LiuCT, YoungK, YanekLR, FeitosaMF, WojczynskiMK, RandK, BrodyJA, CadeBE, DimitrovL, DuanQ, GuoX, LangeLA, NallsMA, OkutH, TajuddinSM, TayoBO, VedantamS, BradfieldJP, ChenG, ChenWM, ChesiA, IrvinMR, PadhukasahasramB, SmithJA, ZhengW, AllisonMA, AmbrosoneCB, BanderaEV, BartzTM, BerndtSI, BernsteinL, BlotWJ, BottingerEP, CarptenJ, ChanockSJ, ChenYI, ContiDV, CooperRS, FornageM, FreedmanBI, GarciaM, GoodmanPJ, HsuYH, HuJ, HuffCD, InglesSA, JohnEM, KittlesR, KleinE, LiJ, McKnight B,NayakU,NemesureB,OgunniyiA,OlshanA,PressMF,RohdeR,RybickiBA,SalakoB,SandersonM,ShaoY,SiscovickDS,StanfordJL,StevensVL,StramA,StromSS,VaidyaD,WitteJS,YaoJ,ZhuX,ZieglerRG,ZondermanAB,AdeyemoA,AmbsS,CushmanM,FaulJD,HakonarsonH,LevinAM,NathansonKL,WareEB,WeirDR,ZhaoW,ZhiD;Bone Mineral Density in Childhood Study (BMDCS) Group,ArnettDK,GrantSFA,KardiaSLR,OloapdeOI,RaoDC,RotimiCN,SaleMM,WilliamsLK,ZemelBS,BeckerDM,BoreckiIB,EvansMK,HarrisTB,HirschhornJN,LiY,PatelSR,PsatyBM,RotterJI,WilsonJG,BowdenDW,CupplesLA,HaimanCA,LoosRJF,NorthKE. Discovery and fine-mapping of adiposity loci using high density imputation of genome-wide association studies in individuals of African ancestry: African Ancestry Anthropometry Genetics Consortium , 2017,13(4):e1006719. [本文引用: 1]
LoosRJF, JanssensACJW . Predicting polygenic obesity using genetic information , 2017,25(3):535-543. [本文引用: 1]
GuoJ, TanJZ, YangYJ, ZhouH, HuSL, HashanA, BahaxarN, XuSH, WeaverTD, JinL, StonekingM, TangK . Variation and signatures of selection on the human face , 2014,75:143-152. [本文引用: 1]
LiCX, JiaJ, WeiYL, WanLH, HuL, YeJ . The selection of 30 ancestry informative markers and its application in ancestry inference Hereditas(Beijing), 2014,36(8):779-785. [本文引用: 1]
JiangL, SunQF, MaQ, ZhaoWT, LiuJ, ZhaoL, JiAQ, LiCX . Optimization and validation of analysis method based on 27-plex SNP panel for ancestry inference Hereditas (Beijing), 2017,39(2):166-173. [本文引用: 1]
LiuY, SunCC, MaM, WangLing, ZhaoWT, MaQ, JiAQ, LiuJ, LiCX . The ancestry inference of Chinese populations using 74-plex SNPs system Hereditas (Beijing), 2020,42(3):296-308. [本文引用: 1]
KennyEE, TimpsonNJ, SikoraM, YeeMC, Moreno- EstradaA, EngC, HuntsmanS, BurchardEG, StonekingM, BustamanteCD, MylesS . Melanesian blond hair is caused by an amino acid change in TYRP1 , 2012,336(6081):554. [本文引用: 1]
ErikssonN, MacphersonJM, TungJY, HonLS, NaughtonB, SaxonovS, AveyL, WojcickiA, Pe'er I, Mountain J,. Web-based, participant-driven studies yield novel genetic associations for common traits , 2010,6(6):e1000993. [本文引用: 3]
KeatingB,BansalAT,WalshS,MillmanJ,NewmanJ,KiddK,BudowleB,EisenbergA,DonfackJ,GaspariniP,BudimlijaZ,HendersAK,ChandrupatlaH,DuffyDL,GordonSD,HysiP,LiuF,MedlandSE,RubinL,MartinNG,SpectorTD,KayserM; International Visible Trait Genetics (VisiGen) Consortium. First all-in-one diagnostic tool for DNA intelligence: genome-wide inference of biogeographic ancestry, appearance, relatedness, and sex with the Identitas v1 Forensic Chip , 2013,127(3):559-572. [本文引用: 2]
AndersenJD, JohansenP, HarderS, ChristoffersenSR, DelgadoMC, HenriksenST, NielsenMM, S?rensenE, UllumH, HansenT, DahlAL, PaulsenRR, B?rstingC, MorlingN . Genetic analyses of the human eye colours using a novel objective method for eye colour classification , 2013,7(5):508-515. [本文引用: 3]
AdhikariK, Fuentes-GuajardoM, Quinto-SánchezM, Mendoza-RevillaJ, Camilo Chacón-DuqueJ,Acu?a-Alonzo V,JaramilloC,AriasW,LozanoRB,PérezGM,Gómez-ValdésJ,Villamil-RamírezH,HunemeierT,RamalloV,Silva de Cerqueira CC,HurtadoM,VillegasV,GranjaV,GalloC,PolettiG,Schuler-FacciniL,SalzanoFM,BortoliniMC,Canizales-QuinterosS,CheesemanM,RosiqueJ,BedoyaG,RothhammerF,HeadonD,González-JoséR,BaldingD,Ruiz-LinaresA. A genome- wide association scan implicates DCHS2, RUNX2, GLI3, PAX1 and EDAR in human facial variation , 2016,7:11616. [本文引用: 4]
ChaS, LimJE, ParkAY, DoJH, LeeSW, ShinC, ChoNH, KangJO, NamJM, KimJS, WooKM, LeeSH, KimJY, OhB . Identification of five novel genetic loci related to facial morphology by genome-wide association studies , 2018,19(1):481. [本文引用: 3]
ColeJB, ManyamaM, LarsonJR, LibertonDK, FerraraTM, RiccardiSL, LiM, MioW, KleinOD, SantoricoSA, HallgrímssonB, SpritzRA . Human facial shape and size heritability and genetic correlations , 2017,205(2):967-978. [本文引用: 4]
CrouchDJM, WinneyB, KoppenWP, ChristmasWJ, HutnikK, DayT, MeenaD, BoumertitA, HysiP, NessaA, SpectorTD, KittlerJ, BodmerWF . Genetics of the human face: Identification of large-effect single gene variants , 2018,115(4):E676-E685. [本文引用: 2]
LeeMK, ShafferJR, LeslieEJ, OrlovaE, CarlsonJC, FeingoldE, MarazitaML, WeinbergSM . Genome-wide association study of facial morphology reveals novel associations with FREM1 and PARK2 , 2017,12(4):e0176566. [本文引用: 7]
LiuF, van der LijnF, SchurmannC, ZhuG, ChakravartyMM, HysiPG, WollsteinA, LaoO, de BruijneM, IkramMA, van der LugtA, RivadeneiraF, UitterlindenAG, HofmanA, NiessenWJ, HomuthG, de ZubicarayG, McMahonKL, ThompsonPM, DaboulA, PulsR, HegenscheidK, BevanL, PausovaZ, MedlandSE, MontgomeryGW, WrightMJ, WickingC, BoehringerS, SpectorTD, PausT, MartinNG, BiffarR, KayserM . A genome-wide association study identifies five loci influencing facial morphology in Europeans , 2012,8(9):e1002932. [本文引用: 4]
PaternosterL, ZhurovAI, TomaAM, KempJP, St PourcainB, TimpsonNJ, McMahonG,McArdleW,RingSM,SmithGD,RichmondS,EvansDM. Genome-wide association study of three-dimensional facial morphology identifies a variant in PAX3 associated with nasion position , 2012,90(3):478-485. [本文引用: 3]
PickrellJK, BerisaT, LiuJZ, SégurelL, TungJY, HindsDA . Detection and interpretation of shared genetic influences on 42 human traits , 2016,48(7):709-717. [本文引用: 5]
ShafferJR, OrlovaE, LeeMK, LeslieEJ, RaffenspergerZD, HeikeCL, CunninghamML, HechtJT, KauCH, NideyNL, MorenoLM, WehbyGL, MurrayJC, LaurieCA, LaurieCC, ColeJ, FerraraT, SantoricoS, KleinO, MioW, FeingoldE, HallgrimssonB, SpritzRA, MarazitaML, WeinbergSM . Genome-wide association study reveals multiple loci influencing normal human facial morphology , 2016,12(8):e1006149. [本文引用: 2]
LiY, ZhaoWT, LiD, TaoXM, XiongZY, LiuJ, ZhangW, JiAQ, TangK, LiuF, LiCX . EDAR, LYPLAL1, PRDM16, PAX3, DKK1, TNFSF12, CACNA2D3, and SUPT3H gene variants influence facial morphology in a Eurasian population , 2019,138(6):681-689. [本文引用: 2]
LiY, ZhaoWT, LiD, TaoXM, XiongZY, LiuJ, ZhangW, LiuHB, JiAQ, TangK, LiuF, LiCX . The effect of EDARV370A on facial and ear morphologies in Uyghur population Hereditas(Beijing), 2018,40(11):1024-1032. [本文引用: 1]
LiJ, JiL . Adjusting multiple testing in multilocus analyses using the eigenvalues of a correlation matrix , 2005,95(3):221-227. [本文引用: 1]
Le PabicP, NgC, SchillingTF . Fat-Dachsous signaling coordinates cartilage differentiation and polarity during craniofacial development , 2014,10(10):e1004726. [本文引用: 1]
NapieralaD, Garcia-RojasX, SamK, WakuiK, ChenC, Mendoza-LondonoR, ZhouG, ZhengQ, LeeB . Mutations and promoter SNPs in RUNX2, a transcriptional regulator of bone formation , 2005,86(1-2):257-268. [本文引用: 1]
FujitaT, AzumaY, FukuyamaR, HattoriY, YoshidaC, KoidaM, OgitaK, KomoriT . Runx2 induces osteoblast and chondrocyte differentiation and enhances their migration by coupling with PI3K-Akt signaling , 2004,166(1):85-95. [本文引用: 1]
YoshidaCA, YamamotoH, FujitaT, FuruichiT, ItoK, InoueK, YamanaK, ZanmaA, TakadaK, ItoY, KomoriT . Runx2 and Runx3 are essential for chondrocyte maturation, and Runx2 regulates limb growth through induction of Indian hedgehog , 2004,18(8):952-963. [本文引用: 1]
SearsKE, GoswamiA, FlynnJJ, NiswanderLA . The correlated evolution of Runx2 tandem repeats, transcriptional activity, and facial length in carnivora , 2007,9(6):555-565. [本文引用: 1]
AbdelhakS, KalatzisV, HeiligR, CompainS, SamsonD, VincentC, Levi-AcobasF, CruaudC, Le MerrerM, MathieuM, K?nigR, VigneronJ, WeissenbachJ, PetitC, WeilD . Clustering of mutations responsible for branchio- oto-renal (BOR) syndrome in the eyes absent homologous region (eyaHR) of EYA1 , 1997,6(13):2247-2255. [本文引用: 1]
PignoniF, HuB, ZavitzKH, XiaoJ, GarrityPA, ZipurskySL . The eye-specification proteins So and Eya form a complex and regulate multiple steps in Drosophila eye development , 1997,91(7):881-891. [本文引用: 1]
KoolenDA, HerbergsJ, VeltmanJA, Pfundt R,van Bokhoven H,StroinkH,SistermansEA,BrunnerHG,Geurts van Kessel A,de Vries BBA. Holoprosencephaly and preaxial polydactyly associated with a 1.24 Mb duplication encompassing FBXW11 at 5q35.1 , 2006,51(8):721-726. [本文引用: 1]
SolomonBD, MercierS, VélezJI, Pineda-AlvarezDE, WyllieA, ZhouN, DubourgC, DavidV, OdentS, RoesslerE, MuenkeM . Analysis of genotype-phenotype correlations in human holoprosencephaly , 2010,154C(1):133-141. [本文引用: 1]
ParryDA, LoganCV, StegmannAP, AbdelhamedZA, CalderA, KhanS, BonthronDT, ClowesV, SheridanE, GhaliN, ChudleyAE, DobbieA, StumpelCT, JohnsonCA . SAMS, a syndrome of short stature, auditory-canal atresia, mandibular hypoplasia, and skeletal abnormalities is a unique neurocristopathy caused by mutations in Goosecoid , 2013,93(6):1135-1142. [本文引用: 1]
Monsoro-BurqAH . PAX transcription factors in neural crest development , 2015,44:87-96. [本文引用: 1]
LiuJL . Population genetics of 30 INDELs in populations of Fujian She[Dissertation] Fujian: Fujian Medical University, 2015. [本文引用: 1]