删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

Y染色体微缺失人群中Y-STR等位基因缺失模式分析

本站小编 Free考研考试/2022-01-01

王燕超, 马晓燕, 孙筱放, 冼嘉嘉, 李少英, 何文智, 王晓蔓, 黎青,广州医科大学附属第三医院妇产科研究所实验部,广东省普通高校生殖与遗传重点实验室,广州 510150

Alleles dropout patterns of Y-short tandem repeats in infertile males with Y chromosome microdeletions

Yanchao Wang, Xiaoyan Ma, Xiaofang Sun, Jiajia Xian, Shaoying Li, Wenzhi He, Xiaoman Wang, Qing Li,Institute of Obstetrics and Gynecology, the Third Affiliated Hospital of Guangzhou Medical University, Key Laboratory of Reproduction and Genetics of Guangdong Higher Education Guangzhou, Guangdong 510150, China

通讯作者: 黎青,博士,主任医师,主管技师,研究方向:分子遗传学,生殖遗传学,法医遗传学。E-mail: 81292522@163.com

编委: 杨昭庆
收稿日期:2018-10-9修回日期:2018-12-25网络出版日期:2019-01-14
基金资助: 广东省科技计划项目资助.2016A20214011


Received:2018-10-9Revised:2018-12-25Online:2019-01-14
Fund supported: Supported by Science and Technology Planning Project of Guangdong Province.2016A20214011

作者简介 About authors
王燕超,硕士研究生,技师,研究方向:分子遗传学E-mail:wycsusan12@163.com。










摘要
Y染色体短串联重复序列(Y-short tandem repeats, Y-STRs)已被广泛应用到DNA检验领域。然而,由于Y染色体存在较高的结构突变率,可能会导致部分Y-STR等位基因丢失甚至产生特殊的缺失模式,从而影响其在法医学中的应用。位于Y染色体长臂的无精子症因子(azoospermia factor, AZF)与精子发生有关,该区域微缺失可导致不育症。然而Y染色体微缺失人群是否存在特殊的Y-STR缺失模式仍有待研究。本文利用法医学上常用17个Y-STR探讨了85例Y染色体微缺失患者的Y-STR缺失模式。结果显示,单纯AZF a区缺失样本,均存在DYS439-DYS389I-DYS389II基因座无效扩增情况;单纯AZF b区或单纯AZF c区缺失样本存在DYS448基因座无效扩增;复合AZF b+c+d区缺失样本存在DYS385-DYS392-DYS448基因座无效扩增;复合AZF a+b+c+d区缺失样本存在DYS390-Y-GATA-H4-DYS385- DYS392-DYS448基因座无效扩增。因此,本研究结果提示Y-STR缺失模式与Y染色体微缺失有对应关系。
关键词: Y染色体微缺失;AZF缺失;Y-STR等位基因缺失;不育症

Abstract
Y chromosomal short tandem repeat (Y-STR) typing is the most commonly used genetic technique in forensic studies. However, there may be a limit to the application of Y-STR in forensic science as Y-STR loci are subject to loss or variation caused by the higher chromosomal structures’ spontaneous mutation rate. Located in the long arm of the Y chromosome, azoospermia factor (AZF) have been shown to participate in spermatogenesis and its deletion could cause infertility. However, little is known about the Y-STR dropout pattern in individuals with Y chromosome microdeletions. In this study, 85 infertile males with Y chromosome interstitial deletion were identified and special Y-STR allele dropout patterns were analyzed by employing a Y-STR Commercial Kit and a Y chromosome Deletion Kit. Results demonstrate that AZF a region deletion are related to DYS439-DYS389I-DYS389II alleles dropout, while AZF b region or c region deletions correlate to DYS448 allele dropout. Null DYS385-DYS392-DYS448 alleles were observed in AZF b+c+d region deletion individuals. While null DYS390-Y-GATA-H4-DYS385-DYS392-DYS448 alleles were observed in AZF a+b+c+d large region deletion individuals. Our data suggest that Y chromosome microdeletions may indicate specific Y-STR locus dropout patterns.
Keywords:Y chromosomal microdeletions;AZF deletion;Y chromosomal short tandem repeats alleles dropout;infertility


PDF (928KB)元数据多维度评价相关文章导出EndNote|Ris|Bibtex收藏本文
本文引用格式
王燕超, 马晓燕, 孙筱放, 冼嘉嘉, 李少英, 何文智, 王晓蔓, 黎青. Y染色体微缺失人群中Y-STR等位基因缺失模式分析[J]. 遗传, 2019, 41(3): 243-253 doi:10.16288/j.yczz.18-235
Yanchao Wang, Xiaoyan Ma, Xiaofang Sun, Jiajia Xian, Shaoying Li, Wenzhi He, Xiaoman Wang, Qing Li. Alleles dropout patterns of Y-short tandem repeats in infertile males with Y chromosome microdeletions[J]. Hereditas(Beijing), 2019, 41(3): 243-253 doi:10.16288/j.yczz.18-235


人类Y染色体第二代遗传标记——Y染色体短串联重复序列(Y chromosomal short tandem repeats, Y-STRs )在DNA检验中已被广泛应用[1,2]。特别是对于男女混合检材,Y-STR可以帮助研究者区分样本中的男性个体,因而成为个体识别的有效手段。 2003年,美国ABI公司推出的AmpFISTR@YfilerTM荧光标记复合扩增系统,可实现同步扩增检测17个Y-STR基因座,该技术已得到广泛认可和应用[3]。无精子症因子(azoospermia factor, AZF)编码基因位于Yq11,且与精子发生相关[4,5]。该基因序列被分为4个(AZF aAZF bAZF cAZF d)亚区[6,7,8],包含与精子发生有关的一系列基因[9,10,11]。且视缺失区域的不同,可引起不同程度的精液质量下降[12,13,14,15]。基于STR技术的性别判断基因AMEL (amelogenin Y)含有2个等位基因座(AMELXAMELY),AMELX位于Xp22.1-22.3,AMELY位于Yp11.2[16,17],目前均已被广泛应用到人类商业化试剂盒中。研究发现,部分Y-STR和AMELY基因表现出等位基因“丢失”(无效扩增)现象,这种等位基因“丢失”现象与Y染色体部分缺失有密切关系[18,19,20,21]。同时,AMELY基因“丢失”现象,与某些特定的Y-STR无效扩增同时发生[20,22]。然而由于样本的多样性、取材过程的不确定性和实验过程的复杂性(如样本DNA降解、含量极低和扩增技术等),实验本身可能得到“不完整”的Y-STR分型结果。因此,这些特殊的基因型将会限制Y-STR的应用和干扰实验室的数据解读,同时影响了法庭科学DNA检验在此类遗传缺陷人群中的应用。本研究分析85例AZF基因缺失患者的Y-STR基因座缺失类型,为此类遗传缺陷人群的遗传标记缺失提供科学解释,以期帮助DNA检验实验室对异常数据做出正确的解读和判断。

1 材料与方法

1.1 研究对象

收集2016年3月~2018年3月于本院就诊的男性不育症患者抗凝血85例。纳入标准:(1)经Y染色体微缺失试剂盒检测存在AZF区域缺失的男性不育患者。排除标准:(1)感染性梗阻性无精子症;(2)特发性低促性腺激素性性腺功能减退症。所有参与者均签署知情同意。

1.2 基因组DNA提取

采用Qiagen微量DNA提取试剂盒(Qiagen公司,德国),按照说明书提取基因组DNA。

1.3 AZF微缺失STS检测

采用Y染色体微缺失试剂盒(Y chromosome deletion detection system kit version 2.0,Promega公司,美国)检测20个序列标签位点(sequence-tagged sites, STS)。本试剂盒包含5组引物复合物(共20对),通过5组多重PCR扩增技术(Multiplex PCR)对样本全基因组进行扩增。其中包含了《欧洲Y染色体微缺失分子诊断指南2014版本》[23]推荐的6个序列标签位点。A组扩增片段包含:SY254、SY157、SY81、SY130和SY182;B组扩增片段包含:SYPR3、SY127、SY242和SY208;C组扩增片段包含:SY128、SY121、SY145和SY255;D组扩增片段包含:SY133、SY152和SY124;E组扩增片段包含:SY14、SY134、SY86和SY84。A~D组选取X 连锁的区域SMCX作为内对照,E组选取男性和女性共有的特异性区域ZFX/ZFY(zinc-finger-Y gene, ZFY)作为内对照。正常男性DNA为阳性对照,去离子水为空白对照。

取10 μL PCR扩增产物,GoldViewTM染色,经4%琼脂糖凝胶电泳,根据以下标准,进行AZF基因缺失类型判断。AZF a区:SY81、SY86、SY84和SY182;AZF b区:SY121、SYPR3、SY124、SY127、SY128、SY130、SY133和SY134;AZF d区:SY145和SY152;AZF c区:SY145、SY152、SY242、SY208、SY254、SY255和SY157。

1.4 Y-STR和AMEL基因分型检测

采用AmpFISTR@YfilerTM荧光标记复合扩增系统(Applied Biosystems公司,美国)对Y染色体上17个STR基因座(DYS456、DYS389Ⅰ、DYS390、DYS389Ⅱ、DYS458、DYS19、DYS385、DYS393、DYS391、DYS439、DYS635、DYS392、GATA-H4、DYS437、DYS438DYS448)进行基因分型。采用PowerPlex 21荧光标 记复合扩增检测试剂(Promega公司,美国)检测AMEL基因分型。使用9700型基因扩增仪(Applied Biosystems公司,美国)和3500 xl Dx型号遗传分析仪(Applied Biosystems公司,美国)进行扩增和毛细管电泳。PCR扩增反应体系总体积为10 μL,扩增体系和扩增条件参照试剂盒说明书。每批样本均采用C2800男性DNA (Promega公司,美国)和超纯水分别作阳性对照和阴性对照。采用Gene Mapper ID-X软件进行数据分析。

2 结果与分析

2.1 Y染色体微缺失

通过20个STS检测,发现单纯AZF a区缺失7例(8.235%),其中2例a区(SY86)部分缺失,另5例a区(SY86+SY84)连续缺失;单纯AZF b区缺失2例(2.353%),其中1例b区(SY134)部分缺失,1例b区(SY121+SYPR3+SY124+SY127+SY128+SY130+SY134)连续缺失;单纯AZF c区缺失60例(70.588%);AZF b+c+d区复合缺失10例(11.765%);AZF a+b+c+d区复合缺失6例(7.059%) (表1,图1)。

Table 1
表1
表1 AZF缺失类型和缺失的序列标签位点
Table 1 AZF deletion region and the sequence-tagged sites
组别 比例 亚组 缺失的序列标签位点
a 7/85 (8.235%) a1 SY86
a2 SY84和SY86
b 2/85 (2.353%) b1 SY134
b2 SY121、SYPR3、SY124、SY127、SY128、SY130和SY134
c 60/85 (70.588%) c1 SY152、SY242、SY208、SY254、SY255和SY157
c2 SY242、SY208、SY254、SY255和SY157
bcd 10/85 (11.765%) bcd1 SY121、SYPR3、SY124、SY127、SY128、SY130、SY133、SY134、SY145、
SY152、SY242、SY208、SY254、SY255和SY157
bcd2 SY121、SYPR3、SY124、SY127、SY128、SY130、SY134、SY152、SY242、
SY208、SY254和SY255
bcd3 SYPR3、SY124、SY127、SY128、SY130、SY134、SY145、SY152、SY242、
SY208、SY254、SY255和SY157
abcd 6/85 (7.059%) abcd1 SY182、SY121、SYPR3、SY124、SY127、SY128、SY130、SY134、SY145、
SY152、SY242、SY208、SY254、SY255和SY157
abcd2 SY86、SY84、SY182、SY121、SYPR3、SY124、SY127、SY128、SY130、
SY133、SY134、SY145、SY152、SY242、SY208、SY254、SY255和SY157
abcd3 SY81、SY86、SY84、SY182、SY121、SYPR3、SY124、SY127、SY128、
SY130、SY134、SY145、SY152、SY242、SY208、SY254、SY255和SY157
abcd4 SY81、SY86、SY84、SY182、SY121、SYPR3、SY124、SY127、SY128、SY130、
SY133、SY134、SY145、SY152、SY242、SY208、SY254、SY255和SY157

新窗口打开|下载CSV

图1

新窗口打开|下载原图ZIP|生成PPT
图1Multiplex PCR结合琼脂糖凝胶电泳结果示意图

M:Marker; 1:正常人样本;2:a2亚组样本;3:c1亚组样本;4:bcd3亚组样本。
Fig. 1Schematic result of multiplex PCR combined with agarose gel electrophoresis



2.2 Y-STR和AMEL基因无效扩增

通过检测17个Y-STR基因座,发现27例(31.765%) Y染色体微缺失患者存在Y-STR基因座无效扩增,且与STS缺失位点相关(图2,图3)。

图2

新窗口打开|下载原图ZIP|生成PPT
图2样本部分Y-STR无效扩增示意图

A:a1亚组(样本:A3);B:a2亚组(样本:C5);C:b1亚组(样本:F2);D:bcd2亚组(样本:C1)。A:DYS439-DYS389I-DYS389II基因座无效扩增;B:DYS437-DYS439-DYS389I-DYS389II-DYS438基因座无效扩增;C:DYS448基因座无效扩增;D:DYS385- DYS392-DYS448基因座无效扩增(黑色箭头标记出无效扩增位点)。
Fig. 2Schematic of specific Y-STR allele dropout



图3

新窗口打开|下载原图ZIP|生成PPT
图3Y染色体结构示意图

Fig. 3Schematic of human Y chromosome and the location of Y-STR



2.2.1 DYS439-DYS389I-DYS389II-(DYS437-DYS438)基因座无效扩增

在共检出的7例AZF a区缺失中,本研究按照缺失类型将其分为a1 (SY86缺失)和a2 (SY86+SY84缺失)两组,其中2例a1亚组样本Y-STR结果均显示DYS439-DYS389I-DYS389II基因座无效扩增;5例a2亚组样本Y-STR结果均显示DYS437-DYS439- DYS389I-DYS389II-DYS438基因座无效扩增(表2;图2,A和B)。

Table 2
表2
表2 AZF部分缺失样本和Y-STR等位基因分型
Table 2 AZF interstitial deletion and Y-STR typing
样本 亚组 等位基因
DYS393 DYS456 DYS458 DYS19 DYS391 DYS635 DYS437 DYS439 DYS389I DYS389II DYS438 DYS390 GATA-H4 DYS385 DYS392 SYS448
A3 a1 14 15 17 16 10 23 14 / / / 10 24 10 14,20 13 18
G8 a1 14 15 18 16 10 23 14 / / / 10 24 10 14,20 13 18
C5 a2 12 15 18 17 9 21 / / / / / 24 12 14,21 13 22
D4 a2 12 15 17 16 10 20 / / / / / 25 13 14,18 13 20
F1 a2 12 15 17 15 11 23 / / / / / 26 11 13,20 15 19
I7 a2 13 15 16 15 10 21 / / / / / 23 12 13 14 18
K8 a2 12 15 18 14 10 20 / / / / / 25 11 13,18 14 20
F2 b1 12 15 17 14 10 20 14 12 12 28 11 23 12 14,19 14 /
H1 b2 13 14 19 15 11 22 14 12 14 30 10 25 10 / / /
E6 c1 13 15 18 14 10 21 14 12 12 26 11 24 12 13,18 14 /
I3 c1 12 15 17 15 10 20 14 12 12 28 12 24 12 14,17 / /
C1 bcd2 12 15 16 14 10 22 15 13 12 28 10 24 12 / / /
C8 bcd2 12 16 17 15 10 23 14 13 12 28 10 25 11 / / /
G3 bcd2 12 15 21 14 10 20 14 12 12 28 11 24 12 / / /
L1 bcd2 13 15 18 14 10 21 15 12 12 26 11 24 12 / / /
L2 bcd2 13 15 16 15 10 20 14 11 12 28 10 23 12 / / /
D7 bcd2 12 14 16 15 10 21 14 11 13 30 10 23 11 / / /
J3 bcd2 14 16 16 13 6 22 14 11 14 30 12 23 10 / / /
K1 bcd3 12 15 16 14 10 20 15 13 12 26 11 24 11 / / /
D2 bcd1 14 16 18 15 10 23 14 14 13 29 10 23 11 / / /
A7 bcd2 15 15 16 17 10 21 14 11 13 29 10 / / / / /
“/”代表该位点等位基因扩增失败。

新窗口打开|下载CSV

2.2.2 (DYS385-DYS392)-DYS448基因座无效扩增

在检出的60例AZF c区缺失中,按照缺失类型将其分为c1和c2两个组,其中2例c1组样本(No. E6和No. I3) Y-STR结果显示DYS392-DYS448基因座无效扩增。另外58例样本17个Y-STR结果均正常。

在检出的2例AZF b区缺失中,按照缺失类型将其分为b1 (SY134缺失)和b2 (SY121+SYPR3+ SY124+SY127+SY128+SY130+SY134缺失)两组,其中b1组样本DYS448基因座无效扩增(图2C);b2组样本结果DYS385-DYS392-DYS448基因座无效扩增,且无效扩增位点与AZF b+c+d区复合缺失样本相同(表2)。

2.2.3 (DYS390-GATA-H4)-DYS385-DYS392-DYS448基因座无效扩增

在检出的10例AZF b+c+d区复合缺失中,按照缺失类型将其分为3组:bcd1、bcd2和bcd3,其中10例样本均显示DYS385-DYS392-DYS448基因座无效扩增,另1例bcd2组样本显示DYS390-GATA- H4-DYS385-DYS392-DYS448基因座无效扩增(表2, 图2D)。

2.2.4 DYS390-GATA-H4-DYS385-DYS392-DYS448基因座无效扩增

在共检出的6例AZF a+b+c+d区复合缺失中,我们按照缺失类型将其分为4组:abcd1、abcd2、abcd3和abcd4,所有样本DYS393-DYS456基因座均扩增成功,而DYS390-GATA-H4-DYS385-DYS392-DYS448基因座均无效扩增(表3)。

Table 3
表3
表3 AZF a+b+c+d区缺失样本的Y-STR等位基因分型
Table 3 AZF large region deletion and Y-STR typing
样本 亚组 等位基因
DYS393 DYS456 DYS458 DYS19 DYS391 DYS635 DYS437 DYS439 DYS389I DYS389II DYS438 DYS390 GATA-H4 DYS385 DYS392 SYS448
F4 abcd 1 12 13 17 15 10 21 14 12 12 28 10 / / / / /
F7 abcd 2 13 15 19 15 11 19 15 / / / / / / / / /
H4 abcd 3 13 18 15 16 / / / / / / / / / / / /
A1 abcd 4 12 15 / / / / / / / / / / / / / /
H6 abcd 4 12 16 / / / / / / / / / / / / / /
L3 abcd 4 12 15 17 16 / / / / / / / / / / / /
“/”代表该位点等位基因扩增失败。

新窗口打开|下载CSV

2.2.5 AMELY基因座无效扩增和异常扩增

考虑到AZF大片段缺失可能影响其位置邻近的性别相关基因AMEL,于是研究者将6例AZF a+b+c+d区复合缺失组样本进行常染色体STR检测,观察其AMELXAMELY基因座。结果表明3例男性abcd4组样本AMELY基因扩增“丢失”,常染色体STR性别基因AMEL显示为(XX),1例abcd3组样本AMELY基因扩增异常,显示为(XYY)。另2例样本常染色体性别相关基因AMEL显示为(XY) (图4)。

图4

新窗口打开|下载原图ZIP|生成PPT
图4样本AMELY等位基因无效扩增和异常扩增结果

A:男性样本无Y峰(样本:A1、H6、L3);B:Y峰峰高异常(样本:H4)。
Fig. 4AMELY allele dropout and abnormal amplification



3 讨论

Y染色体作为男性独有的性染色体,可分为两端的拟常染色质区((pseudoautosomal region, PAR)和男性特异性区域 (male-specific region of Y chromosome, MSY)。在减数分裂中,两端的拟常染区(PAR1和PAR2)常与X染色体发生重组,而MSY区域不发生重组,呈父系单倍体遗传。而Y-STR正位于其非重组区[3,24,25]。除突变外,同一家族中所有男性个体的Y-STR分型结果理论上应完全一致。鉴于其在同一父系家族的特异性,研究者可直接获得男女混合检材样本中的男性Y染色体遗传信息而不受女性样本的影响。其特殊的遗传模式,在法庭科学应用中有其独特的优势[26,27]。同时,Y染色体的非重组区(non-recombining region of Y, NPY)含有大量高度同源的重复序列,导致该区域具备了高度的结构不稳定性,较容易发生染色体内非等位的同源性重组(non-allelic homologous recombination, NAHR),导致Y染色体出现结构重排,如缺失、倒置和重复等[28,29,30,31],从而可能对Y-STR基因的稳定性产生影响。

研究表明,精子的发生调控与Y染色体无精子因子AZF密切相关,且该区也位于Y染色体的非重组区[32,33,34,35]。AZF基因缺失引起的生精障碍是导致男性不育的重要原因,表现为原发性无精子症和少精症[36]。国内有研究表明了男性不育人群部分Y-STR无效等位基因情况,然而由于样本数量有限,部分缺失型别未能全面涉及[18]。本研究采用美国Promega 公司的20个STS位点(SY81、SY86、SY84、SY182、SY121、SYPR3、SY124、SY127、SY128、SY130、SY133、SY134、SY145、SY152、SY242、SY208、SY254、SY255和SY157)的Y染色体缺失检测商业试剂盒,将AZF基因缺失类型分为5组。同时根据缺失位点将每组细分为1~4个亚组,以保证分析结果的准确性。结果显示单纯AZF a区缺失7例(8.235%),包括a区部分缺失和连续缺失两个亚组;单纯AZF b区单纯缺失2例(2.353%),包括 b区部分缺失和连续缺失两个亚组;单纯AZF c区连续缺失60例(70.588%);AZF b+c+d区复合缺失10例(11.765%),包括连续缺失和不连续缺失3个亚组;AZF a+b+c+d区复合缺失6例(7.059%),依据缺失复杂程度分为4个亚组。

本研究结果显示,在Y-STR等位基因缺失模式上面,不同AZF缺失亚组表现出独特的缺失特点(图2,图3):(1)在AZF a1亚组(SY86缺失)中,Y-STR等位基因表现为DYS439-DYS389I-DYS389II基因座无效扩增(图2A);在AZF a2亚组(SY86+SY84缺失)中Y-STR等位基因表现为DYS439-DYS389I- DYS389II-DYS437-DYS438基因座无效扩增(图2B)。因此推测DYS439-DYS389I- DYS389II基因座无效扩增可能与SY86缺失有关;DYS437-DYS438基因座无效扩增可能与SY84缺失有关,但由于此缺失类型在人群中的发生率较低,该组的样本量较少,该结论普适性有待进一步扩大样本量验证。(2)在AZF b组和AZF c组中,所有样本均表现为DYS448基因座无效扩增。其中AZF b 区缺失的Y-STR等位基因无效扩增与之前研究结果不完全一致,原因可能是由于样本选择不同而造成的差异[18]。本研究的AZF b1亚组仅为SY134缺失,因此仅表现为DYS448基因座无效扩增(图2C)。目前研究结果显示, 大部分的男性Y染色体微缺失表现为AZF c区缺 失[36,37],有研究报道了AZF c区缺失与DYS448基因座无效扩增有关,但实验样本量较少,可能产生偏倚[18,38,39]。而在本研究的60例c区缺失样本中仅有2例表现为DYS448基因座无效扩增(3.333%),结果偏低。DYS448基因座无效扩增是否与AZF c区缺失有关,亦或为引物结合区基因突变而导致的等位基因无效扩增,尚有待进一步研究。(3) AZF b+c+d区复合缺失全部样本均表现为DYS385-DYS392-DYS448基因座无效扩增,与AZF b2组缺失的Y-STR基因座相同,因此推测:DYS385-DYS392-DYS448基因座无效扩增可能与(SYPR3+SY124+SY127+SY128+ SY130+SY134)缺失有关。(4) AZF a+b+c+d区复合缺失全部样本均表现为DYS390-GATA-H4-DYS385- DYS392-DYS448基因座无效扩增,根据以上结果推测DYS390-GATA-H4基因座无效扩增与SY182缺失有关。(5) 3例样本AZF abcd4亚组AMELY等位基因“丢失”,DNA检测表现为XX。与之前报道的Y染色体长臂大片段缺失导致DYS458-DYS19-AMELY丢失结果一致[20,40,41]。其机制可能为:此类大片段缺失始于Yp11.2并涵盖了整个Y染色体长臂,以致AMELYDYS458-DYS19及整条长臂遗传标记物丢失,与此同时,靠近拟常染色质区的Y染色体短臂标记物如SRY-DYS393-DYS456与X染色体发生重组,导致Y染色体短臂部分标记物如SRY基因(性别决定基因)重新定位到X染色体短臂,而造成个体发育成男性特征[22,40]。然而此种缺失-重定位理论无法合理解释样本L3的分型结果(AMELY阴性,DYS458- DYS19阳性),有待后续对其机制进行更深入的研究。综上所述,本研究阐明了DYS437、DYS439、DYS389I、DYS389II、DYS438、DYS390、GATA-H4、DYS385、DYS392DYS448AZF基因缺失人群的遗传异质性,为此类遗传缺陷人群的遗传标记缺失提供了科学解释和理论依据,提高实验室对异常Y-STR数据解读能力。

The authors have declared that no competing interests exist.

作者已声明无竞争性利益关系。


参考文献 原文顺序
文献年度倒序
文中引用次数倒序
被引期刊影响因子

Kayser M . Forensic use of Y-chromosome DNA: a general overview
Hum Genet, 2017,136(5):621-635.

URLPMID:28315050 [本文引用: 1]
The male-specific part of the human Y chromosome is widely used in forensic DNA analysis, particularly in cases where standard autosomal DNA profiling is not informative. A Y-chromosomal gene fragment is applied for inferring the biological sex of a crime scene trace donor. Haplotypes composed of Y-chromosomal short tandem repeat polymorphisms (Y-STRs) are used to characterise paternal lineages of unknown male trace donors, especially suitable when males and females have contributed to the same trace, such as in sexual assault cases. Y-STR haplotyping applied in crime scene investigation can (i) exclude male suspects from involvement in crime, (ii) identify the paternal lineage of male perpetrators, (iii) highlight multiple male contributors to a trace, and (iv) provide investigative leads for finding unknown male perpetrators. Y-STR haplotype analysis is employed in paternity disputes of male offspring and other types of paternal kinship testing, including historical cases, as well as in special cases of missing person and disaster victim identification involving men. Y-chromosome polymorphisms are applied for inferring the paternal bio-geographic ancestry of unknown trace donors or missing persons, in cases where autosomal DNA profiling is uninformative. In this overview, all different forensic applications of Y-chromosome DNA are described. To illustrate the necessity of forensic Y-chromosome analysis, the investigation of a prominent murder case is described, which initiated two changes in national forensic DNA legislation both covering Y-chromosome use, and was finally solved via an innovative Y-STR dragnet involving thousands of volunteers after 14 years. Finally, expectations for the future of forensic Y-chromosome DNA analysis are discussed.

Willems T, Gymrek M, Poznik GD, Tyler-Smith C ,The 1000 Genomes Project Chromosome Y Group, Erlich Y.Population-Scale sequencing data enable precise estimates of Y-STR mutation rates
Am J Hum Genet, 2016,98(5):919-933.

URLPMID:27126583 [本文引用: 1]
Short tandem repeats (STRs) are mutation-prone loci that span nearly 1% of the human genome. Previous studies have estimated the mutation rates of highly polymorphic STRs by using capillary electrophoresis and pedigree-based designs. Although this work has provided insights into the mutational dynamics of highly mutable STRs, the mutation rates of most others remain unknown. Here, we harnessed whole-genome sequencing data to estimate the mutation rates of Y chromosome STRs (Y-STRs) with 2 6 bp repeat units that are accessible to Illumina sequencing. We genotyped 4,500 Y-STRs by using data from the 1000 Genomes Project and the Simons Genome Diversity Project. Next, we developed MUTEA, an algorithm that infers STR mutation rates from population-scale data by using a high-resolution SNP-based phylogeny. After extensive intrinsic and extrinsic validations, we harnessed MUTEA to derive mutation-rate estimates for 702 polymorphic STRs by tracing each locus over 222,000 meioses, resulting in the largest collection of Y-STR mutation rates to date. Using our estimates, we identified determinants of STR mutation rates and built a model to predict rates for STRs across the genome. These predictions indicate that the load of de novo STR mutations is at least 75 mutations per generation, rivaling the load of all other known variant types. Finally, we identified Y-STRs with potential applications in forensics and genetic genealogy, assessed the ability to differentiate between the Y chromosomes of father-son pairs, and imputed Y-STR genotypes.

Liu H . Establishment of fluorescence labeled 24 Y-STRs loci multiplex PCR system and its application in forensic medicine (thesis)
[D]. Southern Medical University, 2012.

URL [本文引用: 2]
人类Y染色体属于性染色体,为正常男性所特有,除拟常染区(pseudoautosomal region, PAR)外,在遗传过程中不发生重组,其序列结构除突变外由父代不变的传递给子代,同一父系人群的Y染色体在理论上相同。Y染色体的这一特性,使其在法医DNA检验和亲权鉴定方面有巨大应用潜力。同时由于其具有男性特异性,在实际办案中,对性侵犯、伤害等案件中提取到的男女混合检材进行鉴定时,Y染色体遗传标记检验技术更有其特殊的价值,能够获得男性个体Y染色体遗传信息同时不受女性成分影响。鉴于以上特点,Y染色体长期以来都是作为重要的研究检验对象被应用于法医物证检验。 针对Y染色体第二代遗传标记——短串联重复序列(STR, short tandem repeats)而进行的荧光标记复合扩增检验,是目前应用最广泛、技术最成熟的Y染色体遗传信息检验技术,具有操作简单、检测信息通量高、结果数字化显示易于存储比对等优点。基于这一技术而开发的各种商业化试剂盒,已经在法医DNA检验鉴定中得到广泛应用。2003年Promega公司推出的PowerPlexTM Y试剂盒在一个反应管中同时扩增12个Y-STRs基因座,其中包括ISFH (International Society of Forensic Haemogenetics)认定的欧洲MHL(最小单倍型,minimal haplotypes loci)的9个基因座及SWGDAM (美国DNA分析方法科学工作组,Scientific Working Group On DNA Analysis Methods)推荐的11个基因座。2004年由ABI公司推出的AmpFISTR Y filerTM试剂盒,可以实现同步扩增检测17个Y-STR基因座。但这些现有的商业化试剂盒主要是按照欧洲人群统计选择的基因座位点,其中不少基因座的多态性在中国人群中比较低,如DYS391在中国人群中多态性小于0.4,加之基因座数量少,造成了系统整体个体识别能力低,在法医鉴定的实际应用中有时会遇到瓶颈,特别是近年随着DNA数据库的发展,比对样本基数的增加,Y-STR作为家系排查的主要比对指标,现有Y-STR检测系统识别率不足的缺点日益突出,影响了其数据库比对效能,出现了如嫌犯与多个不同家系的Y-STR单倍型匹配,造成无法排查的情况,或者由于Y-STR突变,造成家系比对无法确定或误判的情况。 因此,开发一种针对中国人群的多态性高、性能稳定、操作简单和能同时检测更多基因座的Y-STR检测体系,成为我国法医物证检验鉴定的迫切需要。本文根据过去十几年国内外针对中国人群Y-STR的研究,选择针对中国男性的GD(基因多态性,gene diversity)数值较高的Y-STR基因座,建立了24个Y-STR基因座荧光标记复合扩增检测体系,有效提高Y-STR检测体系对中国人群的鉴别能力和效率,解决了现有Y-STR荧光检验试剂盒识别能力不足的难题。 本文通过查阅文献,从中选取DYS531、DYS630、DYS622、DYS552、 DYS510、DYS449、DYS459a/b、DYS446、DYS443、DYS587、DYS527a/b、 DYS460、Y-GATA-A10、DYS520、DYS557、DYS522、DYS481、 DYS444等未在现有商业试剂盒体系内、在中国人群中基因多态性高(GD0.6)、且等位基因跨度较小的基因座21个,考虑到需要与现有商业试剂盒联用,特地加入DYS635和DYS385a/b三个基因座,同时应用目前最先进的5色荧光标记,将24个基因座分成四组,使用6-FAM、HEX、TAMRA、ROX分组标记,分子量内标用第五色荧光染料SIZ(橙色荧光,无锡中德美联公司)标记,组成24个Y-STR基因座复合扩增体系。随后通过先对24个基因座的单一扩增条件进行优化,在成功地建立了单个基因座扩增条件的基础上,研究24个基因座复合扩增PCR反应条件,通过实验确定了复合扩增体系的循环参数、缓冲液离子强度、酶量、复合扩增反应体积以及荧光标记引物浓度等,使扩增产物达到平衡、特异的要求,建立稳定、均衡的复合扩增体系,实现同时扩增24个Y-STR基因座。 本文通过编制GeneMapper ID3.2分析文件panel、bins,使用混合单基因座扩增产物方法制作等位基因标准物ladder,使用5色荧光Matrix与SIZ-500内标,建立了基于ABI基因分析仪的自动毛细管电泳检验方法。PCR扩增产物使用3130XL型遗传分析仪进行电泳检测,用软件Foundation data collection收集原始扫描数据,GeneMapper ID3.2进行Y-STR基因分型。对24个Y-STR复合扩增体系的男性特异性、家系稳定性、种属特异性、灵敏度、人体细胞同一性等法医学应用相关指标进行了实验研究,进一步验证了该体系特异性好、性能稳定、反应灵敏。 本文应用建立的24个Y-STR复合扩增检测系统,对146份广东地区无关男性个体进行检测,同时应用AmpFISTR YfilerTM试剂盒进行比较检测,得到Y-STR分型数据后,用直接计数法计算各等位基因频率。基因多态性(gene diversity, GD)及单倍型多样性(haplotype diversity, HD),按公式h=n(1-∑Pi2)/(n-1)计算(n为样本例数,Pi为等位基因频率)。并计算累积的GD值(TGD,相当于常染色体STR评估指标中的累积非父排除率CPE)按公式TGD=1-(1-GD1)(1-GD2)(1-GD3)(1-GD4)...(1-GDn)计算(GDn为各基因座的GD值)。24个Y-STR复合扩增体系共得到145种单倍型,其中144种单倍型出现1次,1种单倍型出现2次,单位点GD值为0.55(DYS531)-0.96(DYS385a/b)HD值为0.99972,TGD值为1-1.88E-14; YfilerTM系统的共得到143种单倍型,其中141种单倍型出现1次,1种单倍型出现2次,1种单倍型出现3次,单位点GD值为0.36(DYS389)-0.96(DYS385a/b), HD值为0.99858,TGD值为1-4.97E-9;24个Y-STR复合扩增体系与YfilerTM系统联用的共得到145种单倍型,其中144种单倍型出现1次,1种单倍型出现2次,HD值为0.99972,TGD值为1-1.066E-20。 研究表明,本文建立的24个Y-STR复合扩增体系稳定、高效、操作简单易用,特异性强,可满足日常法医物证Y-STR检验需要,具有良好的中国人群针对性,系统识别率高于目前最常用的商业AmpFISTR YfilerTM试剂盒,能够很好的解决目前Y-STR商业试剂盒信息量少、个体识别率低的不足。本系统作为Y-STR检验补充手段,应用荧光标记毛细管电泳技术,可应用于目前国内绝大多数法医物证实验室,在法医物证案件检验、亲权鉴定与Y-STR数据库建设具有广泛的应用前景。
刘宏 . 24个Y-STR基因座荧光标记复合检测体系的建立及其法医学应用[学位论文]
南方医科大学, 2012.

URL [本文引用: 2]
人类Y染色体属于性染色体,为正常男性所特有,除拟常染区(pseudoautosomal region, PAR)外,在遗传过程中不发生重组,其序列结构除突变外由父代不变的传递给子代,同一父系人群的Y染色体在理论上相同。Y染色体的这一特性,使其在法医DNA检验和亲权鉴定方面有巨大应用潜力。同时由于其具有男性特异性,在实际办案中,对性侵犯、伤害等案件中提取到的男女混合检材进行鉴定时,Y染色体遗传标记检验技术更有其特殊的价值,能够获得男性个体Y染色体遗传信息同时不受女性成分影响。鉴于以上特点,Y染色体长期以来都是作为重要的研究检验对象被应用于法医物证检验。 针对Y染色体第二代遗传标记——短串联重复序列(STR, short tandem repeats)而进行的荧光标记复合扩增检验,是目前应用最广泛、技术最成熟的Y染色体遗传信息检验技术,具有操作简单、检测信息通量高、结果数字化显示易于存储比对等优点。基于这一技术而开发的各种商业化试剂盒,已经在法医DNA检验鉴定中得到广泛应用。2003年Promega公司推出的PowerPlexTM Y试剂盒在一个反应管中同时扩增12个Y-STRs基因座,其中包括ISFH (International Society of Forensic Haemogenetics)认定的欧洲MHL(最小单倍型,minimal haplotypes loci)的9个基因座及SWGDAM (美国DNA分析方法科学工作组,Scientific Working Group On DNA Analysis Methods)推荐的11个基因座。2004年由ABI公司推出的AmpFISTR Y filerTM试剂盒,可以实现同步扩增检测17个Y-STR基因座。但这些现有的商业化试剂盒主要是按照欧洲人群统计选择的基因座位点,其中不少基因座的多态性在中国人群中比较低,如DYS391在中国人群中多态性小于0.4,加之基因座数量少,造成了系统整体个体识别能力低,在法医鉴定的实际应用中有时会遇到瓶颈,特别是近年随着DNA数据库的发展,比对样本基数的增加,Y-STR作为家系排查的主要比对指标,现有Y-STR检测系统识别率不足的缺点日益突出,影响了其数据库比对效能,出现了如嫌犯与多个不同家系的Y-STR单倍型匹配,造成无法排查的情况,或者由于Y-STR突变,造成家系比对无法确定或误判的情况。 因此,开发一种针对中国人群的多态性高、性能稳定、操作简单和能同时检测更多基因座的Y-STR检测体系,成为我国法医物证检验鉴定的迫切需要。本文根据过去十几年国内外针对中国人群Y-STR的研究,选择针对中国男性的GD(基因多态性,gene diversity)数值较高的Y-STR基因座,建立了24个Y-STR基因座荧光标记复合扩增检测体系,有效提高Y-STR检测体系对中国人群的鉴别能力和效率,解决了现有Y-STR荧光检验试剂盒识别能力不足的难题。 本文通过查阅文献,从中选取DYS531、DYS630、DYS622、DYS552、 DYS510、DYS449、DYS459a/b、DYS446、DYS443、DYS587、DYS527a/b、 DYS460、Y-GATA-A10、DYS520、DYS557、DYS522、DYS481、 DYS444等未在现有商业试剂盒体系内、在中国人群中基因多态性高(GD0.6)、且等位基因跨度较小的基因座21个,考虑到需要与现有商业试剂盒联用,特地加入DYS635和DYS385a/b三个基因座,同时应用目前最先进的5色荧光标记,将24个基因座分成四组,使用6-FAM、HEX、TAMRA、ROX分组标记,分子量内标用第五色荧光染料SIZ(橙色荧光,无锡中德美联公司)标记,组成24个Y-STR基因座复合扩增体系。随后通过先对24个基因座的单一扩增条件进行优化,在成功地建立了单个基因座扩增条件的基础上,研究24个基因座复合扩增PCR反应条件,通过实验确定了复合扩增体系的循环参数、缓冲液离子强度、酶量、复合扩增反应体积以及荧光标记引物浓度等,使扩增产物达到平衡、特异的要求,建立稳定、均衡的复合扩增体系,实现同时扩增24个Y-STR基因座。 本文通过编制GeneMapper ID3.2分析文件panel、bins,使用混合单基因座扩增产物方法制作等位基因标准物ladder,使用5色荧光Matrix与SIZ-500内标,建立了基于ABI基因分析仪的自动毛细管电泳检验方法。PCR扩增产物使用3130XL型遗传分析仪进行电泳检测,用软件Foundation data collection收集原始扫描数据,GeneMapper ID3.2进行Y-STR基因分型。对24个Y-STR复合扩增体系的男性特异性、家系稳定性、种属特异性、灵敏度、人体细胞同一性等法医学应用相关指标进行了实验研究,进一步验证了该体系特异性好、性能稳定、反应灵敏。 本文应用建立的24个Y-STR复合扩增检测系统,对146份广东地区无关男性个体进行检测,同时应用AmpFISTR YfilerTM试剂盒进行比较检测,得到Y-STR分型数据后,用直接计数法计算各等位基因频率。基因多态性(gene diversity, GD)及单倍型多样性(haplotype diversity, HD),按公式h=n(1-∑Pi2)/(n-1)计算(n为样本例数,Pi为等位基因频率)。并计算累积的GD值(TGD,相当于常染色体STR评估指标中的累积非父排除率CPE)按公式TGD=1-(1-GD1)(1-GD2)(1-GD3)(1-GD4)...(1-GDn)计算(GDn为各基因座的GD值)。24个Y-STR复合扩增体系共得到145种单倍型,其中144种单倍型出现1次,1种单倍型出现2次,单位点GD值为0.55(DYS531)-0.96(DYS385a/b)HD值为0.99972,TGD值为1-1.88E-14; YfilerTM系统的共得到143种单倍型,其中141种单倍型出现1次,1种单倍型出现2次,1种单倍型出现3次,单位点GD值为0.36(DYS389)-0.96(DYS385a/b), HD值为0.99858,TGD值为1-4.97E-9;24个Y-STR复合扩增体系与YfilerTM系统联用的共得到145种单倍型,其中144种单倍型出现1次,1种单倍型出现2次,HD值为0.99972,TGD值为1-1.066E-20。 研究表明,本文建立的24个Y-STR复合扩增体系稳定、高效、操作简单易用,特异性强,可满足日常法医物证Y-STR检验需要,具有良好的中国人群针对性,系统识别率高于目前最常用的商业AmpFISTR YfilerTM试剂盒,能够很好的解决目前Y-STR商业试剂盒信息量少、个体识别率低的不足。本系统作为Y-STR检验补充手段,应用荧光标记毛细管电泳技术,可应用于目前国内绝大多数法医物证实验室,在法医物证案件检验、亲权鉴定与Y-STR数据库建设具有广泛的应用前景。

Tiepolo L, Zuffardi O . Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human Y chromosome long arm
Hum Genet, 1976,34(2):119-124.

URLPMID:1002136 [本文引用: 1]
A deletion of the Y chromosome at the distal portion of band q11 was found in 6 men with normal male habitus but with azoospermia. Five of them were found during a survey of 1170 subfertile males while the sixth was karyotyped because of slight bone abnormalities. These findings, together with a review of the literature, suggest that on the distal portion of the nonfluoresecent segment of the long arm of the Y, factors are located controlling spermatogenesis.

Liu XG, Hu HY, Guo YH, Sun YP . Correlation between Y chromosome microdeletion and male infertility
Genet Mol Res, 2016,15(2).

URLPMID:27323142 [本文引用: 1]
Abstract Dyszoospermia due to genetic factors is the leading cause of male infertility. To explore the correlation between azoospermia factor (AZF) microdeletion of the Y chromosome and male infertility, we evaluated AZF microdeletion on the long arm of the Y chromosome in 166 infertile males and 50 fertile males using multiplex polymerase chain reactions amplification and gel electrophoresis. The results demonstrated that 28 individuals had varying degrees of microdeletion in the AZF region (16.90%); 12 out of the 76 males with azoospermia and 16 out of the 90 males with oligospermia had AZF microdeletion. AZF microdeletion was not observed in any of the healthy controls. In addition, 53.60% of the AZF microdeletions occurred in the AZFc region. It can be concluded that AZF microdeletion on the long arm of the Y chromosome can result in male spermatogenesis dysfunction. Detection of AZF microdeletion can provide a theoretical basis for genetic counseling, as well as improve the diagnosis and treatment of this disease.

Vogt PH, Edelmann A, Kirsch S, Henegariu O, Hirschmann P, Kiesewetter F, Köhn FM, Schill WB, Farah S, Ramos C, Hartmann M, Hartschuh W, Meschede D, Behre HM, Castel A, Nieschlag E, Weidner W, Gröne HJ, Jung A, Engel W, Haidl G . Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11
Hum Mol Genet, 1996,5(7):933-943.

URLPMID:8817327 [本文引用: 1]
Abstract In a large collaborative screening project, 370 men with idiopathic azoospermia or severe oligozoospermia were analysed for deletions of 76 DNA loci in Yq11. In 12 individuals, we observed de novo microdeletions involving several DNA loci, while an additional patient had an inherited deletion. They were mapped to three different subregions in Yq11. One subregion coincides to the AZF region defined recently in distal Yq11. The second and third subregion were mapped proximal to it, in proximal and middle Yq11, respectively. The different deletions observed were not overlapping but the extension of the deleted Y DNA in each subregion was similar in each patient analysed. In testis tissue sections, disruption of spermatogenesis was shown to be at the same phase when the microdeletion occurred in the same Yq11 subregion but at a different phase when the microdeletion occurred in a different Yq11 subregion. Therefore, we propose the presence of not one but three spermatogenesis loci in Yq11 and that each locus is active during a different phase of male germ cell development. As the most severe phenotype after deletion of each locus is azoospermia, we designated them as: AZFa, AZFb and AZFc. Their probable phase of function in human spermatogenesis and candidate genes involved will be discussed.

Kent-First M, Muallem A, Shultz J, Pryor J, Roberts K, Nolten W, Meisner L, Chandley A, Gouchy G, Jorgensen L, Havighurst T, Grosch J . Defining regions of the Y-chromosome responsible for male infertility and identification of a fourth AZF region (AZFd) by Y-chromosome microdeletion detection
Mol Reprod Dev, 1999,53(1):27-41.

URL [本文引用: 1]

Ataei M, Akbarian F, Talebi MA, Dolati P, Mobaraki M, Faraji A, Houshmand M . Analysis of partial AZFc (gr/gr, b1/b3, and b2/b3) deletions in Iranian oligozoospermia candidates for intracytoplasmic sperm injection (ICSI)
Turk J Med Sci, 2018,48(2):251-256.

URLPMID:29714436 [本文引用: 1]
The Y chromosome carries several spermatogenesis genes distributed in three regions: AZFa, AZFb and AZFc. Microdeletions in these regions have been seen in 10% of sterile males with azoospermia or oligozoospermia, the most frequent of them being characterized by a complete deletion of AZFc region. A partial AZFc deletion named gr/gr has been singled out as a risk factor for spermatogenic... [Show full abstract]

Sen S, Pasi AR, Dada R, Shamsi MB, Modi D . Y chromosome microdeletions in infertile men: Prevalence, phenotypes and screening markers for the Indian population
J Assist Reprod Gen, 2013,30(3):413-422.

URLPMID:3607676 [本文引用: 1]
Yq microdeletions are the leading genetic cause of male infertility and its detection is clinically relevant for appropriate genetic counseling. We aimed to determine the prevalence and type of Yq microdeletions, the associated seminal phenotypes and the STS markers that are relevant for its testing in Indian population.Yq microdeletion analysis was carried out in 1,636 infertile cases in our centers. Additional data was collected from published studies in Indian population leading to a total of 3,647 cases.In our cohort, 3.4 % (56/1,636) of infertile men had Yq microdeletions. Combining the data from other published studies identified 215/3,647 (5.8 %) infertile individuals to harbor Yq microdeletions; with 6.4 % in azoopsermia, 5.8 % in oligozoospermia and 3.2 % in oligoasthenozoospermia and teratozoospermia cases. No significant differences in the deletion frequencies were observed between idiopathic vs non idiopathic cases (5.8 vs 8.6 % respectively). Deletions of AZFc were at highest frequency (46.6 %) with double deletions most commonly observed in azoospermic subjects. With respect to the STS markers, screening with the six European Academy of Andrology (EAA) markers would miss 3.1 % of cases; additional non EAA markers that would contribute significantly to screening are sY746, sY82, sY121, sY128, sY130, sY143, sY145 & sY160.The frequency of Yq microdeletions is lower in Indian population as compared to Western counterparts. There is no major association of Yq microdeletions with seminal parameters or cause of infertility. Clinically it will be necessary to offer Yq microdeletion testing to all the classes of infertile men. The EAA markers may not be adequate to detect microdeletions in Indian infertile men.

Foresta C, Moro E, Rossi A, Rossato M, Garolla A, Ferlin A . Role of the AZFa candidate genes in male infertility
J Endocrinol Invest, 2000,23(10):646-651.

URLPMID:11097428 [本文引用: 1]
The AZFa region on the Y-chromosome long arm has been recently assembled in a complete sequence map contained in a contig and shown to span more than 1 Mb. It contains three genes, USP9Y , DBY and UTY , but only the former two can be at present considered candidate genes for the infertile phenotype associated with deletion of this interval. These genes have X-homologues and are expressed in many tissues, even if DBY has a shorter transcript expressed in the testis only, strengthening its role in spermatogenesis. Only few patients with gene-specific deletion have been reported and a clear genotype-phenotype relation is still lacking. While deletions or even smaller mutations in USP9Y seem to be associated with a testicular phenotype of severe hypospermatogenesis, patients with deletions of DBY may present both Sertoli cell-only syndrome and severe hypospermatogenesis. On the contrary, the phenotype of patients with deletion of both USP9Y and DBY seem to be invariably azoospermia with a testicular histology of Sertoli cell-only.

Sen S, Ambulkar P, Hinduja I, Zaveri K, Gokral J, Pal A, Modi D . Susceptibility of gr/gr rearrangements to azoospermia or oligozoospermia is dependent on DAZ and CDY1 gene copy deletions
J Assist Reprod Gen, 2015,32(9):1333-1341.

URLPMID:26149076 [本文引用: 1]
The purpose of this study was to determine the association of AZFc subdeletions (gr/gr, b1/b3 and b2/b3) and deletion of DAZ and CDY1 gene copies with male infertilityThree hundred twelve controls, 172 azoospermic and 343 oligozoospermic subjects were subjected to AZFc subdeletion typing by STS PCR. Deletion of DAZ and CDY1 gene copies was done using sequence family variant analysis. Sperm concentration and motility were compared between men with and without AZFc subdeletions. Effect of the AZFc subdeletions on ICSI outcome was evaluated.Amongst the three AZFc subdeletions, the frequency of gr/gr was higher in oligozoospermic (10.5 %) and azoospermic (11.6 %) men as compared to controls (5.1 %). In men with AZFc subdeltions, loss of two DAZ and one CDY1 gene copy made them highly susceptible to azoospermia and severe oligozoospermia with OR of 29.7 and 26, respectively. These subdeletions had no effect on ICSI outcome, albeit there were an increased number of poor quality embryos in AZFc subdeleted group.AZFc subdeletions are a major risk factor for male infertility in the Indian population. In the subjects with AZFc subdeletions, the deletion of DAZ and CDY1 gene copies increases its susceptibility to azoospermia or severe oligozoospermia. Since these deletions can be vertically transmitted to the future male offspring by ICSI, it will be essential to counsel the couples for the transmission of the genetic defect in the male offspring born after assisted reproduction and the risk of perpetuating infertility in future generation.

Liu XY, Wang RX, Fu Y, Luo LL, Guo W, Liu RZ . Outcomes of intracytoplasmic sperm injection in oligozoospermic men with Y chromosome AZFb or AZFc microdeletions
Andrologia, 2017,49(1):e12602.

URLPMID:27242045 [本文引用: 1]
Summary We investigated whether the presence of Y chromosome azoospermia factor (AZF) microdeletions impacts upon the outcomes of intracytoplasmic sperm injection (ICSI) using fresh ejaculated spermatozoa. Sixteen oligozoospermia patients with Y chromosome AZFb or AZFc microdeletions and undergoing ICSI cycles between March 2013 and November 2014 were studied. Twenty-six infertile men with normal Y chromosomes and also undergoing IVF/ICSI in the same time period were used as controls. A retrospective case control study approach was used. Among the 16 cases, 12 (75%, 12/16) had deletions of AZFc markers (sY152, sY254 and sY255), one (6.25%, 1/16) had a deletion of sY152, and two (12.5%, 2/16) had deletions of sY152, sY254, sY255 and sY157. AZFb microdeletions were found in one patient (6.25%, 1/16). There were no significant differences between groups for cleaved embryo rate, high-grade embryo rate, blastocyst formation rate, embryo implantation rate, clinical pregnancy rate and delivery rate. The clinical outcomes of ICSI for oligozoospermic patients with Y chromosome AZF microdeletion are comparable to those of infertile patients with normal Y chromosomes. Our findings indicate that ICSI should be offered to patients with an AZFc deletion and that oligozoospermia patients with AZFb microdeletions are likely to father children.

Zhang YS, Li LL, Xue LT, Zhang H, Zhu YY, Liu RZ . Complete azoospermia factor b deletion of Y chromosome in an infertile male with severe oligoasthenozoospermia: Case report and literature review
Urology, 2017,102:111-115.

URL [本文引用: 1]

Liu XH, Qiao J, Li R, Yan LY, Chen LX . Y chromosome AZFc microdeletion may not affect the outcomes of ICSI for infertile males with fresh ejaculated sperm
J Assist Reprod Gen, 2013,30(6):813-819.

URLPMID:23715876 [本文引用: 1]
To explore whether the presence of a Y chromosome AZFc microdeletion confers any adverse effect on the outcomes of intracytoplasmic sperm injection (ICSI) with fresh ejaculated sperm.A total of 143 oligozoospermia patients with Y chromosome AZFc microdeletion in ICSI cycles in a five-year period were studied. Infertile men with normal Y chromosome in ICSI at the same time-frame were used as controls matched to the study group for age of female, female's body mass index, male's age, infertility duration and number of oocytes retrieved. Retrospective case-control study was used.There were no significant differences between groups in clinical outcomes of endometrial thickness, transferred embryos, good embryo rates, implantation rates, biochemical pregnancy rates, clinical pregnancy rates, ectopic pregnancy rates, miscarriage rates, preterm birth rates, the ratio of male and female babies, newborn body height, newborn weight, low birth weight and birth defects (P > 0.05). Patients with Y chromosome AZFc microdeletion had a lower fertilization rate (61.8 % vs. 67.8 %, P ICSI clinical outcomes for oligozoospermic patients with Y chromosome AZFc microdeletion are basically comparable to that of infertile patients with normal Y chromosomes. The results of ICSI were not affected by the AZFc deletion. Preimplantation genetic diagnosis (PGD) before ICSI for Y chromosome AZFc microdeletion may not be a justifiable regular procedure if the couples didn't care the vertical transmission of Y chromosome deletion.

Fu L, Xiong DK, Ding XP, Li C, Zhang LY, Ding M, Nie SS, Quan Q . Genetic screening for chromosomal abnormalities and Y chromosome microdeletions in Chinese infertile men
J Assist Reprod Gen, 2012,29(6):521-527.

URLPMID:3370047 [本文引用: 1]
To investigate the frequency and type of both chromosomal abnormalities and Y chromosome microdeletions and analyze their association with defective spermatogenesis in Chinese infertile men. This is a single center study. Karyotyping using G-banding and screening for Y chromosome microdeletion by multiplex polymerase chain reaction(PCR)were performed in 200 controls and 1,333 infertile men, including 945 patients with non-obstructive azoospermia and 388 patients with severe oligozoospermia. Out of 1,333 infertile patients, 154(11.55%) presented chromosomal abnormalities. Of these, 139 of 945 (14.71%) were from the azoospermic and 15 of 388 (3.87%) from the severe oligozoospermic patient groups. The incidence of sex chromosomal abnormalities in men with azoospermia was 11.53% compared with 1.03% in men with severe oligozoospermia (P < 0.01). Also 144 of 1,333(10.80%) patients presented Y chromosome microdeletions. The incidence of azoospermia factor(AZF) microdeletion was 11.75% and 8.51% in patients with azoospermia and severe oligozoospermia respectively. Deletion of AZFc was the most common and deletions in AZFa or AZFab or AZFabc were found in azoospermic men. In addition, 34 patients had chromosomal abnormalities among the 144 patients with Y chromosome microdeletions. No chromosomal abnormality and microdeletion in AZF region were detected in controls. There was a high incidence (19.80%) of chromosomal abnormalities and Y chromosomal microdeletions in Chinese infertile males with azoospermia or severe oligozoospermia. These findings strongly suggest that genetic screening should be advised to infertile men before starting assisted reproductive treatments.

Nakahori Y, Takenaka O, Nakagome Y . A human X-Y homologous region encodes "amelogenin"
Genomics, 1991,9(2):264-269.

URL [本文引用: 1]

Sullivan KM, Mannucci A, Kimpton CP, Gill P. Arapid and quantitative DNA sex test: fluorescence-based PCR analysis of X-Y homologous gene amelogenin
Biotechniques, 1993, 15(4): 636- 638, 640-641.

URLPMID:8251166 [本文引用: 1]
A rapid, simple and reliable sex test that entails PCR amplification of a segment of the X-Y homologous gene amelogenin has been developed. We used a single pair of primers spanning part of the first intron which generated 106-bp and 112-bp PCR products from the X and Y homologues, respectively, that can be analyzed simply by agarose gel electrophoresis. Less than 1 ng of template DNA is required for gender assignment, and the test has been automated by the fluorescent tagging of the PCR products that are then quantitated during electrophoresis by automated fluorescence-detection technology

Ye JJ, Li ZF, Chen YX, Ma L, Li M, Wang YL, Yang LJ, Chen BW . Analysis of null alleles for 17 Y chromosome- short tandem repeat loci in infertile males
Chin J Med Gene, 2013,30(3):330-334.

URL [本文引用: 4]
目的 探讨17个Y染色体短串联重复(Y-short tandem repeat,Y-STR)在遗传缺陷相关的男性不育群体中基因座分型时无效等位基因现象.方法 应用改良多重PCR体系进行序列标签位点(sequence tagged sites,STS)检测,对236例非梗阻性无精、严重少精男性个体进行Y染色体无精子症因子(azoospermia factor,AZF)微缺失检测及分型;应用AmpFISTR(R) YfilerTM体系在上述人群中进行17 Y-STR(DYS19、DYS389Ⅰ、DYS389Ⅱ、DYS390、DYS391、DYS392、DYS393、DYS437、DYS438、DYS439、DYS385a/b、DYS448、DYS456、DYS458、DYS635、Y-GATA-H4)基因分型.结果 上述人群中AZF的总缺失率为16.95%(40/236):非梗阻性无精症患者存在13例AZFc缺失,6例AZFb+c缺失,2例AZFa缺失,1例AZFb缺失.严重少精子症患者存在17例AZFc缺失,1例AZFb缺失.未发现AZFa+b+c缺失.40例不育个体通过17 Y-STR检测在DYS438、DYS439、DYS437、DYS389Ⅰ、DYS389Ⅱ、DYS392、DYS385a/b、DYS448基因座发现了无效等位基因.2例AZFa缺失个体具有DYS438、DYS439、DYS437、DYS389Ⅰ、DYS389Ⅱ等位基因缺失;2例AZFb缺失个体具有DYS392、DYS385a/b等位基因缺失;30例AZFc缺失个体具有DYS448等位基因缺失;6例AZFb+c缺失个体具有DYS392、DYS385a/b、DYS448等位基因缺失.在其他男性不育个体中未见Y-STR缺失.结论 Y染色体AZF微缺失是无精症、严重少精子症的主要遗传因素,这种缺失造成法医学相关的Y染色体短串联重复基因座缺失,在性侵犯案件中可导致错误的解释.阐明Y-STR在男性不育人群中的异质性在法医DNA鉴定中可以更好地完善Y-STR数据库和提高STR数据的解释能力.
叶峻杰, 李宗芳, 陈燕祥, 马丽, 李貌, 郭海, 王跃力, 杨丽娟, 程宝文 . 男性不育人群17个Y染色体短串联重复基因座无效等位基因分析
中华医学遗传学杂志, 2013,30(3):330-334.

URL [本文引用: 4]
目的 探讨17个Y染色体短串联重复(Y-short tandem repeat,Y-STR)在遗传缺陷相关的男性不育群体中基因座分型时无效等位基因现象.方法 应用改良多重PCR体系进行序列标签位点(sequence tagged sites,STS)检测,对236例非梗阻性无精、严重少精男性个体进行Y染色体无精子症因子(azoospermia factor,AZF)微缺失检测及分型;应用AmpFISTR(R) YfilerTM体系在上述人群中进行17 Y-STR(DYS19、DYS389Ⅰ、DYS389Ⅱ、DYS390、DYS391、DYS392、DYS393、DYS437、DYS438、DYS439、DYS385a/b、DYS448、DYS456、DYS458、DYS635、Y-GATA-H4)基因分型.结果 上述人群中AZF的总缺失率为16.95%(40/236):非梗阻性无精症患者存在13例AZFc缺失,6例AZFb+c缺失,2例AZFa缺失,1例AZFb缺失.严重少精子症患者存在17例AZFc缺失,1例AZFb缺失.未发现AZFa+b+c缺失.40例不育个体通过17 Y-STR检测在DYS438、DYS439、DYS437、DYS389Ⅰ、DYS389Ⅱ、DYS392、DYS385a/b、DYS448基因座发现了无效等位基因.2例AZFa缺失个体具有DYS438、DYS439、DYS437、DYS389Ⅰ、DYS389Ⅱ等位基因缺失;2例AZFb缺失个体具有DYS392、DYS385a/b等位基因缺失;30例AZFc缺失个体具有DYS448等位基因缺失;6例AZFb+c缺失个体具有DYS392、DYS385a/b、DYS448等位基因缺失.在其他男性不育个体中未见Y-STR缺失.结论 Y染色体AZF微缺失是无精症、严重少精子症的主要遗传因素,这种缺失造成法医学相关的Y染色体短串联重复基因座缺失,在性侵犯案件中可导致错误的解释.阐明Y-STR在男性不育人群中的异质性在法医DNA鉴定中可以更好地完善Y-STR数据库和提高STR数据的解释能力.

Wang YL, Ye JJ, Li ZF, Zheng S, Ma L, Guo H, Yang LJ, Chen BW . Identification of null and duplicated alleles for forensic DYS549, DYS527 and DYS459 in male infertility population
Hereditas (Beijing), 2014,36(8):786-792.

URLMagsci [本文引用: 1]
位于Y染色体无精症因子区域(Azoospermia factor, AZF)的基因座位点DYS549、DYS527和DYS459在法医学鉴定和家系分析中被广泛应用。但是,在男性不育患者中,DYS549、DYS527和DYS459位点很可能会表现出特殊的基因型,对应用Y染色体短串联重复序列(Y chromosome short tandem repeat, Y-STR)进行个体识别的结果产生干扰。因此,文章应用14个Y-STR基因座复合扩增体系和Y染色体AZFc区DAZ、CDY1基因的拷贝数检测等方法,探讨男性不育症中法医学相关的3个Y-STR基因座的异常分型,对个体识别和家系分析中的DNA检验异常结果提供合理的解释。在240例男性非梗阻性无精、严重少精、先天性双侧输精管缺如(CBVAD)患者中,采用改良的多重PCR体系进行AZF区域微缺失的序列标签位点(Sequence tagged sites, STSs)检测,发现AZF微缺失40例(AZFa:2例;AZFb:2例;AZFc:30例;AZFb+c:6例),AZF的总缺失率为16.67%。应用14 Y-STR复合扩增体系对上述AZF微缺失的阳性患者样本进行检测,发现所有AZFb缺失患者存在DYS549等位基因缺失,AZFc缺失患者存在DYS527、DYS459等位基因缺失,AZFb+c缺失患者存在DYS549、DYS527和DYS459等位基因缺失。在AZF微缺失阴性的不育症患者中,通过检测DAZ、CDY1基因拷贝数发现10例AZFc部分复制的患者(1例为先天性输精管缺如,2例非梗阻性无精症,7例严重少精子症),占所调查不育人群的4.17%。男性不育人群AZF区域3个Y-STR基因座多态性会造成等位基因缺失或者重复,这些异常分型是由于临床遗传缺陷造成的而不是实验偏差。阐明Y-STR在男性不育人群中的异质性可以更好地完善Y-STR数据库和解释STR实验结果。
王跃力, 叶峻杰, 李宗芳, 郑水, 马丽, 郭海, 杨丽娟, 程宝文 . 对法医学相关的DYS549、DYS527、DYS459基因座在男性不育症人群中的缺失、重复调查
遗传, 2014,36(8):786-792.

URLMagsci [本文引用: 1]
位于Y染色体无精症因子区域(Azoospermia factor, AZF)的基因座位点DYS549、DYS527和DYS459在法医学鉴定和家系分析中被广泛应用。但是,在男性不育患者中,DYS549、DYS527和DYS459位点很可能会表现出特殊的基因型,对应用Y染色体短串联重复序列(Y chromosome short tandem repeat, Y-STR)进行个体识别的结果产生干扰。因此,文章应用14个Y-STR基因座复合扩增体系和Y染色体AZFc区DAZ、CDY1基因的拷贝数检测等方法,探讨男性不育症中法医学相关的3个Y-STR基因座的异常分型,对个体识别和家系分析中的DNA检验异常结果提供合理的解释。在240例男性非梗阻性无精、严重少精、先天性双侧输精管缺如(CBVAD)患者中,采用改良的多重PCR体系进行AZF区域微缺失的序列标签位点(Sequence tagged sites, STSs)检测,发现AZF微缺失40例(AZFa:2例;AZFb:2例;AZFc:30例;AZFb+c:6例),AZF的总缺失率为16.67%。应用14 Y-STR复合扩增体系对上述AZF微缺失的阳性患者样本进行检测,发现所有AZFb缺失患者存在DYS549等位基因缺失,AZFc缺失患者存在DYS527、DYS459等位基因缺失,AZFb+c缺失患者存在DYS549、DYS527和DYS459等位基因缺失。在AZF微缺失阴性的不育症患者中,通过检测DAZ、CDY1基因拷贝数发现10例AZFc部分复制的患者(1例为先天性输精管缺如,2例非梗阻性无精症,7例严重少精子症),占所调查不育人群的4.17%。男性不育人群AZF区域3个Y-STR基因座多态性会造成等位基因缺失或者重复,这些异常分型是由于临床遗传缺陷造成的而不是实验偏差。阐明Y-STR在男性不育人群中的异质性可以更好地完善Y-STR数据库和解释STR实验结果。

Ma Y, Kuang JZ, Zhang J, Wang GM, Wang YJ, Jin WM, Hou YP . Y chromosome interstitial deletion induced Y-STR allele dropout in AMELY-negative individuals
Int J Legal Med, 2012,126(5):713-724.

URLPMID:22669323 [本文引用: 3]
Abstract Short tandem repeat (STR) multiplexes with the amelogenin (AMEL) gene as a gender marker have been used as a routine tool of forensic DNA analysis. It has been reported that AMEL-based gender detection could misidentify a known male as a female due to the dropout of amelogenin Y (AMELY) allele. Other gender markers, such as Y-chromosomal short tandem repeat (Y-STR), may be a substitution of AMEL and help the sex determination. In current study, employing AmpFlSTR03 Sinofiler and AmpFlSTR03 Y-filer64 PCR Amplification kit, 18 AMELY-negative males were identified. Accordingly, the incidence of the AMELY dropout was 0.227 ‰ (18/79,304) in Chinese population. Sequencing of AMELY allele and analyzing of azoospermia factors region suggested that 3 out of 18 misidentifications were induced by mutations in the primer-binding region of the AMELY, while other 15 sex misidentifications were results of Y chromosome microdeletions with variant lengths. Moreover, variant combination patterns of AMELY dropout and Y-STRs deletions were also observed. Our data suggested that Y-STR locus dropout may indicate more problems, especially in the mixed sample's interpretation. Results of haplogroup prediction showed that seven AMELY dropouts combined with variant Y-STR deletions can be classified as the J2 subdivision, suggesting that some of these Y chromosomes might descend from a common ancestor.

Takayama T, Takada N, Suzuki R, Nagaoka S, Watanabe Y, Kumagai R, Aoki Y, Butler JM . Determination of deleted regions from Yp11.2 of an amelogenin negative male
Legal Med-Tokyo, 2009,11(Suppl.1):S578-S580.

URLPMID:19269239 [本文引用: 1]
The use of short tandem repeat (STR) multiplexes with the incorporated gender marker amelogenin is now common practice in forensic laboratories. The amelogenin locus is encoded by two single copy genes located on Xp22.1 p22.3 (AMELX) and Yp11.2 (AMELY). There are differences in size and sequence between AMELX and AMELY that can be used for sex-typing tests. A sized-based difference for AMELX and AMELY is an integral part of most PCR multiplex kits that are used for DNA profiling. However, we experienced a case of a normal male being typed as female (dropout of the amelogenin Y allele) with AmpFlSTR Profiler kit, AmpFlSTR Identifiler kit and PowerPlex 16 System. Further testing with Y-STR loci using the AmpFlSTR Yfiler kit revealed an additional null at DYS458 locus in this amelogenin negative male. We examined the deleted regions using a total of 60 loci from Y-STRs, STSs (sequence tagged sites) and newly designed primer sets. Three deleted regions in Yp11.2 were seen in this sample. The sizes of these deletions were approximately 2.51 Mb, 25 kb and 834b, respectively. The deletions did not belong to the five reported patterns in a collection of 45 deletion males from 12 populations described by Jobling et al.

Davis C, Illescas M, Tirado C, Lopez R, Budowle B , Cruz TD. A case of amelogenin Y-null: a simple primer binding site mutation or unusual genetic anomaly
Leg Med, 2012, 146): 320-323.

URLPMID:22721879 [本文引用: 2]
A thirteen year old boy was murdered by a gunshot wound to the head. In order to confirm identity of the boy, samples were sent to the Instituto de Ciencias Forenses de Puerto Rico (PR-ICF) DNA laboratory. Autosomal DNA results exhibited only an X at the Amelogenin locus, whereas the autopsy results reported the child to be anatomically male. The sample was amplified with four separate YSTR marker systems. While a full Y-STR profile for the father of the boy was obtained, the boy only amplified at STR markers on the p arm of the Y chromosome. Theories that could account for this large absence of Y-STR results include an X translocation or Yp isochromosome.

Krausz C, Hoefsloot L, Simoni M, Tüttelmann F . European Academy of Andrology, European Molecular Genetics Quality Network. EAA/EMQN best practice guidelines for molecular diagnosis of Y-chromosomal microdeletions: state-of-the-art 2013
Andrology, 2014,2(1):05-19.

URL [本文引用: 1]

Shang L, Mo XT, Yang F, Zhang J, Yu ZL, Ma X, Zhao XC, Li WS . Progress towards forensic research and application of Multi-copied Y-STR loci
Foren Sci Technol, 2018,43(2):97-103.

[本文引用: 1]

尚蕾, 莫晓婷, 杨帆, 张建, 余政梁, 马新, 赵兴春, 李万水 . 多拷贝Y-STR基因座在法庭科学领域的研究
刑事技术. 2018,43(2):97-103.

[本文引用: 1]

Yannic G, Basset P, Hausser J . A new perspective on the evolutionary history of western European Sorex araneus group revealed by paternal and maternal molecular markers
Mol Phylogenet Evol, 2008,47(1):237-250.

URLPMID:18325791 [本文引用: 1]
The species of the common shrew (Sorex araneus) group are morphologically very similar, but have undergone a spectacular chromosomal evolution. We investigate here the evolutionary history of the Sorex araneus group distributed in western Europe. In particular, we clarify the position of a difficult species, S. granarius, using sex-specific (mtDNA and Y-chromosome) markers. The karyotype of S. granarius is generally considered similar to the common ancestor of the restricted group considered here. The mtDNA data (1.4 kb) confirms the close relationship between S. granarius and S. araneus sensu stricto (hereafter S. araneus s.s.), but the Y-chromosome (3.4 kb) produces a quite different picture: S. granarius is closely related to another species, S. coronatus. Comparison of mtDNA and Y-chromosome phylogenies suggests that the genetic and chromosomal evolution in this group are disconnected processes. The evolutionary history of the south-western European populations of the S. araneus group can only be understood considering secondary contacts between taxa after their divergence, implying genetic exchanges by means of hybridization and/or introgression.

Zhang WQ, Liu YX, Huang DX . Y-STR mutation and forensic application of rapidly mutating Y-STRs
Chin J Fore Medi, 2015,30(4):380-383.

URL [本文引用: 1]
Y染色体遗传标记在性犯罪案件及父系亲缘关系鉴定中具有特殊应用价值,但也存在同一父系男性个体间无法有效区分的局限性。快速突变Y-STR(rapidly mutating Y-STRs,RM Y-STRs)基因座的出现有望在一定程度上解决这一法医学应用局限。本文就STR的突变机制、Y-STR突变的影响因素、RM Y-STR的提出及其法医学应用价值作一简要综述。
张文琼, 刘宇轩, 黄代新 . Y-STR突变及快速突变Y-STR的法医学应用价值
中国法医学杂志, 2015,30(4):380-383.

URL [本文引用: 1]
Y染色体遗传标记在性犯罪案件及父系亲缘关系鉴定中具有特殊应用价值,但也存在同一父系男性个体间无法有效区分的局限性。快速突变Y-STR(rapidly mutating Y-STRs,RM Y-STRs)基因座的出现有望在一定程度上解决这一法医学应用局限。本文就STR的突变机制、Y-STR突变的影响因素、RM Y-STR的提出及其法医学应用价值作一简要综述。

Ballantyne KN, Keerl V, Wollstein A, Choi Y, Zuniga SB, Ralf A ,Vermeulen M, de Knijff P, Kayser M.A new future of forensic Y-chromosome analysis: Rapidly mutating Y-STRs for differentiating male relatives and paternal lineages
Forensic Sci Int-Gen, 2012,6(2):208-218.

URLPMID:21612995 [本文引用: 1]
The panels of 9–17 Y-chromosomal short tandem repeats (Y-STRs) currently used in forensic genetics have adequate resolution of different paternal lineages in many human populations, but have lower abilities to separate paternal lineages in populations expressing low Y-chromosome diversity. Moreover, current Y-STR sets usually fail to differentiate between related males who belong to the same paternal lineage and, as a consequence, conclusions cannot be drawn on the individual level as is desirable for forensic interpretations. Recently, we identified a new panel of rapidly mutating (RM) Y-STRs, composed of 13 markers with mutation rates above 1×10612, whereas most Y-STRs, including all currently used in forensics, have mutation rates in the order of 1×10613 or lower. In the present study, we demonstrate in 604 unrelated males sampled from 51 worldwide populations (HGDP-CEPH) that the RM Y-STRs provide substantially higher haplotype diversity and haplotype discrimination capacity (with only 3 haplotypes shared between 8 of the 604 worldwide males), than obtained with the largest set of 17 currently used Y-STRs (Yfiler) in the same samples (33 haplotypes shared between 85 males). Hence, RM Y-STRs yield high-resolution paternal lineage differentiation and provide a considerable improvement compared to Yfiler. We also find in this worldwide dataset substantially less genetic population substructure within and between geographic regions with RM Y-STRs than with Yfiler Y-STRs. Furthermore, with the present study we provide enhanced data evidence that the RM Y-STR panel is extremely successful in differentiating between closely and distantly related males. Among 305 male relatives, paternally connected by 1–20 meiotic transfers in 127 independent pedigrees, we show that 66% were separated by mutation events with the RM Y-STR panel whereas only 15% were with Yfiler; hence, RM Y-STRs provide a statistically significant 4.4-fold increase of average male relative differentiation relative to Yfiler. The RM Y-STR panel is powerful enough to separate closely related males; nearly 50% of the father and sons, and 60% of brothers could be distinguished with RM Y-STRs, whereas only 7.7% and 8%, respectively, with Yfiler. Thus, by introducing RM Y-STRs to the forensic genetic community we provide important solutions to several of the current limitations of Y chromosome analysis in forensic genetics.

Repping S, Skaletsky H, Lange J, Silber S ,Van Der Veen F, Oates RD, Page DC, Rozen S.Recombination between palindromes P5 and P1 on the human Y chromosome causes massive deletions and spermatogenic failure
Am J Hum Genet, 2002,71(4):906-922.

URLPMID:12297986 [本文引用: 1]
It is widely believed that at least three nonoverlapping regions of the human Y chromosome— AZFa, AZFb, and AZFc (“ azoospermia factors” a, b, and c)—are essential for normal spermatogenesis. These intervals are defined by interstitial Y-chromosome deletions that impair or extinguish spermatogenesis. Deletion breakpoints, mechanisms, and lengths, as well as inventories of affected genes, have been elucidated for deletions of AZFa and of AZFc but not for deletions of AZFb or of AZFb plus AZFc. We studied three deletions of AZFb and eight deletions of AZFb plus AZFc, as assayed by the STSs defining these intervals. Guided by Y-chromosome sequence, we localized breakpoints precisely and were able to sequence nine of the deletion junctions. Homologous recombination can explain seven of these deletions but not the remaining two. This fact and our discovery of breakpoint hotspots suggest that factors in addition to homology underlie these deletions. The deletions previously thought to define AZFb were found to extend from palindrome P5 to the proximal arm of palindrome P1, 1.5 Mb within AZFc. Thus, they do not define a genomic region separate from AZFc. We also found that the deletions of AZFb plus AZFc, as assayed by standard STSs heretofore available, in fact extend from P5 to the distal arm of P1 and spare distal AZFc. Both classes of deletions are massive: P5/proximal-P1 deletions encompass up to 6.2 Mb and remove 32 genes and transcripts; P5/distal-P1 deletions encompass up to 7.7 Mb and remove 42 genes and transcripts. To our knowledge, these are the largest of all human interstitial deletions for which deletion junctions and complete intervening sequence are available. The restriction of the associated phenotype to spermatogenic failure indicates the remarkable functional specialization of the affected regions of the Y chromosome.

Yang Y, Zhang SZ , Y chromosome variations and male infertility
Chin J Med Genet, 2010,27(3):276-281.

[本文引用: 1]
男性不育是一种常见的复杂疾病,Y染色体连锁生精障碍是该病的一个重要病因.Y染色体男性特异性区域存在大量的重复序列,这些序列间频发的染色体内非等位性同源重组,使Y染色体具备了高变异率的特点,这些结构变化较易引起生精相关基因的剂量改变,进而导致男性不育.作者对近年来DNA水平上男性不育相关的Y染色体变异研究进行了综述.
杨元, 张思仲 . Y染色体变异与男性不育
中华医学遗传学杂志, 2010,27(3):276-281.

[本文引用: 1]
男性不育是一种常见的复杂疾病,Y染色体连锁生精障碍是该病的一个重要病因.Y染色体男性特异性区域存在大量的重复序列,这些序列间频发的染色体内非等位性同源重组,使Y染色体具备了高变异率的特点,这些结构变化较易引起生精相关基因的剂量改变,进而导致男性不育.作者对近年来DNA水平上男性不育相关的Y染色体变异研究进行了综述.

Ballantyne KN, Goedbloed M, Fang R, Schaap O, Lao O, Wollstein A ,Choi Y, van Duijn K, Vermeulen M, Brauer S, Decorte R, Poetsch M, von Wurmb-Schwark N, de Knijff P, Labuda D, Vézina H, Knoblauch H, Lessig R, Roewer L, Ploski R, Dobosz T, Henke L, Henke J, Furtado MR, Kayser M. Mutability of Y-chromosomal microsatellites: rates, characteristics, molecular bases,and forensic implications
Am J Hum Genet, 2010,87(3):341-353.

URLPMID:20817138 [本文引用: 1]
(95% credible interval [CI], 1.38 × 10 61 2.02 × 10) to 7.44 × 10 (95% CI, 6.51 × 10 61 9.09 × 10) per marker per generation. With the 924 mutations at 120 Y-STR markers, a nonsignificant excess of repeat losses versus gains (1.16:1), as well as a strong and significant excess of single-repeat versus multirepeat changes (25.23:1), was observed. Although the total repeat number influenced Y-STR locus mutability most strongly, repeat complexity, the length in base pairs of the repeated motif, and the father's age also contributed to Y-STR mutability. To exemplify how to practically utilize this knowledge, we analyzed the 13 most mutable Y-STRs in an independent sample set and empirically proved their suitability for distinguishing close and distantly related males. This finding is expected to revolutionize Y-chromosomal applications in forensic biology, from previous male lineage differentiation toward future male individual identification.

Goedbloed M, Vermeulen M, Fang RN, Lembring M, Wollstein A, Ballantyne K, Lao O, Brauer S, Krüger C, Roewer L, Lessig R, Ploski R, Dobosz T, Henke L, Henke J, Furtado MR, Kayser M . Comprehensive mutation analysis of 17 Y-chromosomal short tandem repeat polymorphisms included in the AmpFlSTR Yfiler PCR amplification kit
Int J Legal Med, 2009,123(6):471-482.

URLPMID:2766043 [本文引用: 1]
The Y-chromosomal short tandem repeat (Y-STR) polymorphisms included in the AmpF l STR03 Yfiler03 polymerase chain reaction amplification kit have become widely used for forensic and evolutionary applications where a reliable knowledge on mutation properties is necessary for correct data interpretation. Therefore, we investigated the 17 Yfiler Y-STRs in 1,730–1,764 DNA-confirmed father–son pairs per locus and found 84 sequence-confirmed mutations among the 29,792 meiotic transfers covered. Of the 84 mutations, 83 (98.8%) were single-repeat changes and one (1.2%) was a double-repeat change (ratio, 1:0.01), as well as 43 (51.2%) were repeat gains and 41 (48.8%) repeat losses (ratio, 1:0.95). Medians from Bayesian estimation of locus-specific mutation rates ranged from 0.0003 for DYS448 to 0.0074 for DYS458, with a median rate across all 17 Y-STRs of 0.0025. The mean age (at the time of son’s birth) of fathers with mutations was with 34.40 (±11.63) years higher than that of fathers without ones at 30.32 (±10.22) years, a difference that is highly statistically significant ( p 651%, 12 had mutation rates of >0.1% and four of <0.1%, (2) single-repeat changes were strongly favored over multiple-repeat ones for all loci but 1 and (3) considerable variation existed among loci in the ratio of repeat gains versus losses. Our finding of three Y-STR mutations in one father–son pair (and two pairs with two mutations each) has consequences for determining the threshold of allelic differences to conclude exclusion constellations in future applications of Y-STRs in paternity testing and pedigree analyses.

Colaco S, Modi D . Genetics of the human Y chromosome and its association with male infertility
Reprod Biol Endocrin, 2018,16(1):14.

URLPMID:29454353 [本文引用: 1]
The human Y chromosome harbors genes that are responsible for testis development and also for initiation and maintenance of spermatogenesis in adulthood. The long arm of the Y chromosome (Yq) contains many ampliconic and palindromic sequences making it predisposed to self-recombination during spermatogenesis and hence susceptible to intra-chromosomal deletions. Such deletions lead to copy number variation in genes of the Y chromosome resulting in male infertility. Three common Yq deletions that recur in infertile males are termed as AZF (Azoospermia Factor) microdeletions viz. AZFa, AZFb and AZFc. As estimated from data of nearly 40,000 Y chromosomes, the global prevalence of Yq microdeletions is 7.5% in infertile males; however the European infertile men are less susceptible to Yq microdeletions, the highest prevalence is in Americans and East Asian infertile men. In addition, partial deletions of the AZFc locus have been associated with infertility but the effect seems to be ethnicity dependent. Analysis of > 17,000 Y chromosomes from fertile and infertile men has revealed an association of gr/gr deletion with male infertility in Caucasians and Mongolian men, while the b2/b3 deletion is associated with male infertility in African and Dravidian men. Clinically, the screening for Yq microdeletions would aid the clinician in determining the cause of male infertility and decide a rational management strategy for the patient. As these deletions are transmitted to 100% of male offspring born through assisted reproduction, testing of Yq deletions will allow the couples to make an informed choice regarding the perpetuation of male infertility in future generations. With the emerging data on association of Yq deletions with testicular cancers and neuropsychiatric conditions long term follow-up data is urgently needed for infertile men harboring Yq deletions. If found so, the information will change the current the perspective of androgenetics from infertility and might have broad implication in men health. The online version of this article (10.1186/s12958-018-0330-5) contains supplementary material, which is available to authorized users.

Sen S, Ambulkar P, Hinduja I, Zaveri K, Gokral J, Pal A, Modi D . Susceptibility of gr/gr rearrangements to azoospermia or oligozoospermia is dependent on DAZ and CDY1 gene copy deletions
J Assist Reprod Genet, 2015,32(9):1333-1341.

URLPMID:26149076 [本文引用: 1]
The purpose of this study was to determine the association of AZFc subdeletions (gr/gr, b1/b3 and b2/b3) and deletion of DAZ and CDY1 gene copies with male infertilityThree hundred twelve controls, 172 azoospermic and 343 oligozoospermic subjects were subjected to AZFc subdeletion typing by STS PCR. Deletion of DAZ and CDY1 gene copies was done using sequence family variant analysis. Sperm concentration and motility were compared between men with and without AZFc subdeletions. Effect of the AZFc subdeletions on ICSI outcome was evaluated.Amongst the three AZFc subdeletions, the frequency of gr/gr was higher in oligozoospermic (10.5&nbsp;%) and azoospermic (11.6&nbsp;%) men as compared to controls (5.1&nbsp;%). In men with AZFc subdeltions, loss of two DAZ and one CDY1 gene copy made them highly susceptible to azoospermia and severe oligozoospermia with OR of 29.7 and 26, respectively. These subdeletions had no effect on ICSI outcome, albeit there were an increased number of poor quality embryos in AZFc subdeleted group.AZFc subdeletions are a major risk factor for male infertility in the Indian population. In the subjects with AZFc subdeletions, the deletion of DAZ and CDY1 gene copies increases its susceptibility to azoospermia or severe oligozoospermia. Since these deletions can be vertically transmitted to the future male offspring by ICSI, it will be essential to counsel the couples for the transmission of the genetic defect in the male offspring born after assisted reproduction and the risk of perpetuating infertility in future generation.

Zhang YS, Li LL, Xue LT, Zhang H, Zhu YY, Liu RZ . Complete Azoospermia Factor b deletion of Y chromosome in an infertile male with severe oligoasthenozoospermia: case report and literature review
Urology, 2017,102:111-115.

URL [本文引用: 1]

Yousefi-Razin E, Nasiri MJ, Omrani MD . Frequency of Y chromosome microdeletions among Iranian infertile men with azoospermia and severe oligozoospermia: a meta-analysis
J Reprod Infertil, 2016,17(4):208-212.

URLPMID:5124339 [本文引用: 1]
While multiple factors can contribute to male infertility, genetic factors, such as chromosomal disorders or Y-chromosome microdeletion, are responsible for about 10% of male infertility. Considering the role of Y-chromosome micro-deletions in men with oligozoospermia who volunteer forin vitrofertilization (IVF), the prevalence of such microdeletions in each particular community needs to be exactly determined. Hence, the present study attempted to analyze the available literature on the frequency of chromosome microdeletion among Iranian infertile men. In the first stage, a systematic search was performed on international and Iranian databases including PubMed, Scopus, Web of Science, IranMedex, MEDLIB, and Scientific Information Database in order to extract all relevant studies published until December 1, 2014. According to the literature review and meta-analysis process, Y chromosome microdeletions were present in about 12.1% (95% CI, 6.5 21.5) of Iranian infertile men with azoospermia and severe oligozoospermia. Because of the presence of Y-chromosome microdeletion in at least 12% of Iranian infertile men, it is necessary all the IVF centers, implement this Y-chromosome microdeletion screening tests in thework-upof male infertility.

Zhang YS, Dai RL, Wang RX, Zhang HG, Chen S, Liu RZ . Analysis of y chromosome microdeletion in 1738 infertile men from Northeastern China
Urology, 2013,83(3):584-588.

URLPMID:23769119 [本文引用: 2]
To determine the frequencies and the characteristics of Y chromosome microdeletion in infertile men from northeastern China to perform appropriate therapeutic choices. The study included 1738 infertile men. Sperm concentration was measured according to standard methods and karyotype analysis was performed on peripheral blood lymphocytes with standard G-banding. Multiplex polymerase chain reaction amplification using 9 specific sequence-tagged sites were selected to detect Y chromosome microdeletions. The data showed that the frequency of Y chromosome microdeletion was 8.57%. The most common microdeletion, among the azoospermia factor (AZF) regions, was detected in the AZFc region, followed by AZFb+c, AZFb, AZFa+b+c, AZFa, and AZFa+c. One-hundred seven patients with Y chromosome microdeletion developed azoospermia, 39 developed severe oligozoospermia (sperm concentration02≤502× 106/mL), and 3 developed moderate oligozoospermia (sperm concentration >502× 106/mL and02≤1002× 106/mL). Karyotype analysis was available for 130 patients with Y chromosome microdeletion and abnormal karyotypes were found in 1902patients (14.6%). The most frequent abnormal karyotype was 46,X,Yqh-(n02= 7). In northeastern China, Y chromosome microdeletion diagnosis should be performed before the use of intracytoplasmic sperm injection in infertile men with sperm count02≤1002× 106/mL, especially in men with azoospermia.

Akınsal EC, Baydilli N, Dündar M, Ekmekçioğlu O . The frequencies of Y chromosome microdeletions in infertile males
Turk J Urol, 2018,44(5):389-392.

URL [本文引用: 1]
Congenital absence of the vas deferens (CAVD) is a relatively rare anomaly that may contribute to male infertility. The aim of this study was to evaluate the clinical features of patients with CAVD and to emphasise some pathological conditions that may be detected during the infertility work-up or follow-up of these patients. The charts of 150 males with the diagnosis of CAVD were evaluated... [Show full abstract]

Balaresque P, Bowden GR, Parkin EJ, Omran GA, Heyer E, Quintana-Murci L, Roewer L, Stoneking M, Nasidze I, Carvalho-Silva DR ,Tyler-Smith C, de Knijff P, Jobling MA.Dynamic nature of the proximal AZFc region of the human Y chromosome: multiple independent deletion and duplication events revealed by microsatellite analysis
Hum Mutat, 2008,29(10):1171-1180.

URL [本文引用: 1]

Turrina S, Caratti S, Ferrian M, De Leo D . Deletion and duplication at DYS448 and DYS626 loci: unexpected patterns within the AZFc region of the Y-chromosome
Int J Legal Med, 2015,129(3):449-455.

URLPMID:25821202 [本文引用: 1]
Abstract Increasing the knowledge of multiple and microstructural events within the Y-chromosome may prove useful to better characterize abnormal short tandem repeats patterns complicating DNA profile interpretation. On the long arm of the human Y-chromosome, such structural rearrangements were observed in azoospermia factor regions (AZFa, AZFb, AZFc) that play an important role in male fertility and also host Y-STRs commonly used in forensic genetics. Here, we describe two cases, involving two males formerly included in an Italian population study, where DYS448 and DYS626 loci, located within the AZFc region, simultaneously displayed a double deletion in one case and a double duplication in the other. With the aim of better defining the size of both events, low and high-resolution mapping by means of 16 sequence-tagged sites was performed, and unexpected discontinued patterns within the palindromic segments b1/b3 of the AZFc were identified. Extending the analysis to their respective male relatives revealed unaltered transmission of the patterns along the two pedigrees. Reviewing literature data describing DYS448-DYS626 deletion and duplication suggested no close correlation between the occurrence of multiple/microstructural events and geographical origin.

Chang YM, Perumal R, Keat PY, Yong RY, Kuehn DL, Burgoyne L . A distinct Y-STR haplotype for Amelogenin negative males characterized by a large Y(p)11.2 (DYS458-MSY1-AMEL-Y) deletion
Forensic Sci Int, 2007,166(2-3):115-120.

URLPMID:16765004 [本文引用: 2]
The use of STR multiplexes with the incorporated gender marker Amelogenin is common practice in forensic DNA analysis. However, when a known male sample shows a dropout of the Amelogenin Y-allele, the STR system falsely genotypes it as a female. To date, our laboratory has observed 18 such cases: 12 from our Y-STR database and six from casework. A study on 980 male individuals in the Malaysian population using the AmpFlSTR03 Y-filer64 has revealed a distinct Y-chromosome haplotype associated with the Amelogenin nulls. Our results showed that whilst the Amelogenin nulls were noticeably absent among the Chinese, both the Indians and Malays exhibited such mutations at 3.2 and 0.6%, respectively. It was also found that the Amelogenin negative individuals predominantly belonged to the J2e lineage, suggesting the possibility of a common ancestor for at least some of these chromosomes. The null frequencies showed concordance with the data published in Chang et al. [Higher failures of Amelogenin sex test in an Indian population group, J. Forensic Sci. 48 (2003) 1309–1313] on a smaller Malaysian population of 338 males which used a Y-STR triplex. In the current study, apart from the absence of the Amelogenin Y-locus, a complete absence of the DYS458 locus in all the nulls was also observed. This study together with the 2003 study has indicated a similar deletion region exists on the Yp11.2 band in all the 18 Y-chromosomes. Using bioinformatics, this deletion has been mapped to a region of at least 1.13Mb on the Yp11.2 encompassing the Amelogenin, MSY1 minisatellite and DYS458 locus. Further, the Y-filer64 haplotypes revealed an additional null at Y-GATA H4 in two of the Indian males presented here.

Ou X, Chen W, Chen H, Zhao F, Zheng J, Tong D, Chen Y, Chen A, Sun H . Null alleles of the X and Y chromosomal amelogenin gene in a Chinese population
Int J Legal Med, 2012,126(4):513-518.

URLPMID:21735294 [本文引用: 1]
The use of amelogenin locus typing as a gender marker incorporated in short tandem repeat (STR) multiplexes is a common practice in sex typing. Mutations in the X or Y homologue of the amelogenin gene can be misleading and result in serious mistakes in forensic applications and prenatal diagnosis. In these present studies, the amelogenin gene of 8,087 unrelated male individuals from Chinese Han population was genotyped with Powerplex 16 system. The samples that showed discordant results were taken for frequency calculation and further validated by re-amplification with different primer sets, Y-STR typing, and sequencing. Our results describe six amelogenin X-allele ( AMELX ) or amelogenin Y-allele ( AMELY ) null cases in these studied subjects with an overall prevalence of 0.074%. Further validation revealed point mutations in the amelogenin-priming sites associated with AMELX nulls (three cases, 0.037%) and deletions on the Y chromosome encompassing the AMELY and other Y-STR loci with three AMELY nulls (0.037%). These mutations and failure of the amplification of the AMELX and AMELY alleles have not been reported for the Chinese population. These and previous findings suggest that mutations in the amelogenin gene may result in amplification failure of the AMELX or AMELY allele, and an additional gender test for unambiguous sex determination may be needed.
相关话题/基因 遗传 检验 序列 法医