删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

我国金柑属植物气候适宜区的预测

本站小编 Free考研考试/2022-01-01

章翼1,,
薛帅1,
黄红梅1,
李大志2, 3,
唐帅1,
孔维政1,
易自力1,,
1.湖南农业大学生物科技技术学院 长沙 410128
2.湖南农业大学园艺园林学院 长沙 410128
3.国家柑橘改良中心长沙分中心 长沙 410128
基金项目:湖南农业大学第一批重大科研项目暨创新团队培育项目(17PYXM02)资助

详细信息
作者简介:章翼, 主要研究方向为果树种质资源评价。E-mail: 15974106701@163.com
通讯作者:易自力, 主要研究方向为植物种质资源开发及遗传改良与利用。E-mail: yizili@hunau.net
中图分类号:S601.9

计量

文章访问数:66
HTML全文浏览量:32
PDF下载量:16
被引次数:0
出版历程

收稿日期:2021-06-30
录用日期:2021-09-26
网络出版日期:2021-10-16
刊出日期:2021-11-10

Prediction of suitable climatic areas for Fortunella species in China

ZHANG Yi1,,
XUE Shuai1,
HUANG Hongmei1,
LI Dazhi2, 3,
TANG Shuai1,
KONG Weizheng1,
YI Zili1,,
1. College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
2. Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
3. National Center for Citrus Improvement, Changsha 410128, China
Funds:This study was supported by the First Major Research Projects and the Cultivation Project of Innovation Teams of Hunan Agricultural University (17PYXM02)

More Information
Corresponding author:E-mail: yizili@hunau.net


摘要
HTML全文
(1)(2)
参考文献(28)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:近年来, 由于金柑商业种植品种单一导致种植效益降低, 种植面积不断萎缩, 而且随着黄龙病等病害的爆发导致野生金柑属资源分布面积不断缩小。在我国湖南、福建、广西等省份已开展过对金柑属野生的资源收集工作, 但尚未考虑气候对其分布的影响。因此, 亟需了解金柑气候适宜分布区, 为其种质资源的收集和保护提供基础。本研究运用最大熵模型(MaxEnt)和地理信息系统(ArcGIS 10.3), 结合金柑属(Fortunella)植物的实际分布数据和18个影响分布的气候因子, 对金柑属6个种的潜在气候适宜区进行预测, 并利用刀切法(Jackknife test)筛选主导气候因子。结果表明, 金柑属潜在气候适宜区范围主要分布于大别山—大巴山以南地区, 山金柑(F. hindsii)、罗浮金柑(F. margarita)、罗纹金柑(F. japonica)、长叶金柑(F. polyandra)、金弹(F. crassifolia)和长寿金柑(F. obovata)的最适宜区面积为354 000 km2、276 100 km2、495 800 km2、613 600 km2、474 400 km2和663 403 km2; 除长叶金柑外, 其他5个种的气候最适宜区主要分布于湖南、江西、广西、福建、浙江、广东6个省份; 长寿金柑的最适宜区除上述各省份外还包括重庆; 长叶金柑的气候最适宜区包括重庆、广西、广东、海南、云南南部地区。金柑属实际分布点均在预测图中的最适宜区域内, 说明预测结果与实际分布情况高度一致。金柑属6个种适宜区预测模型的曲线下面积(AUC)值均大于0.9, 表明本研究预测分布范围精确度高, 可作为金柑属野生资源的区域调查及保护、优良品种推广的科学依据。
关键词:金柑属/
MaxEnt/
气候适宜区/
主导气候因子
Abstract:Fortunella is one group of the citrus fruit trees in southern China, a kind of edible hesperidium with rich flavonoids, carotenoids, limonoids, coumarins, and the fruit of these evergreen trees also have ornamental value. In recent years, areas of growth of commercial species of Fortunella have been decreasing due to a low net interest of planting single species. Meanwhile, natural resources have also withered due to the Huanglong disease caused by gram-negative bacteria. National collection of germplasm resources of Fortunella has been completed in parts of China, including Hunan, Fujian, Guangxi, etc.; however, this work did not take the effects of climatic factors on their distribution into consideration, which could provide a scientific basis for protection and collection of natural resources of Fortunella species. In this study, we predicted suitable climatic areas for six species (F. hindsii Swingle, F. margarita Swingle, F. japonica Swingle, F. polyandra Tanaka, F. crassifolia Swingle, and F. obovata Tanaka) of Fortunella using the MaxEnt (the maximum entropy, MaxEnt 3.3.3) model and the ArcGIS (the geographic information, ArcGIS 10.3) system to analyze actual geographical distribution data and 18 climate factors affecting their distribution. The dominant climate factors were screened through Jackknife test. Results showed that the suitable climatic region for the six species analyzed were distributed mainly in the southern areas of Dabie—Daba Mountain. The suitable region for the six species covered 354 000 km2 (F. hindsii Swingle), 276 100 km2 (F. margarita Swingle), 495 800 km2 (F. japonica Swingle), 613 600 km2 (F. polyandra Tanaka), 474 400 km2 (F. crassifolia Swingle), and 663 403 km2 (F. obovata Tanaka). The optimum climate region for F. polyandra Tanaka mainly extended to Chongqing, Guangxi, Guangdong, Hainan, and south of Yunnan, while that for the other five species was predominantly distributed in Hunan, Jiangxi, Guangxi, Fujian, Zhejiang, and Guangdong; some favorable region for F. obovata Tanaka even extended to Chongqing. The main climatic factors affecting the growth of Fortunella include minimum temperature, precipitation, and isothermality. The major climatic factors affecting F. hindsii Swingle distribution included isothermality and precipitation in April and June, while for F. margarita Swingle such climatic factors comprised precipitation in April and June, minimum temperature in February and July, and isothermality and precipitation in the driest month. Similarly, geographical distribution of F. japonica Swingle was influenced by precipitation in April and June, minimum temperature in July, isothermality and precipitation in the driest month, and precipitation in the warmest quarter. Likewise, the major climatic factors affecting natural distribution of F. polyandra Tanaka comprised precipitation in July and in December, minimum temperature in February and June, isothermality, and mean precipitation in the warmest quarter. Similar analytical results demonstrated that the dominant climatic factors affecting the distribution of both F. crassifolia Swingle and F. obovata Tanaka were in terms of precipitation in June, and isothermality and mean precipitation of the warmest quarter. The area under the curve (AUC) value of the MaxEnt model for all six species exceeded 0.9 and their actual distribution areas were also integrated, which indicated that the predicted distribution range of this study was highly accurate. Consequently, these results are expected to provide scientific guidance for regional investigation and protection of wild species of Fortunella and promotion of its varieties.
Key words:Fortunella/
MaxEnt Model/
Climatic suitable areas/
Dominant climatic factors

HTML全文


图1金柑属植物山金柑(a)、罗浮(b)、罗纹(c)、长叶金柑(d)、金弹(e)和长寿金柑(f)在我国的潜在适生分布范围
Figure1.Prediction results of suitable distribution areas of six species of Fortunella in China based on MaxEnt model (a: F. hindsii Swingle; b: F. margarita Swingle; c: F. japonica Swingle; d: F. polyandra Tanaka; e: F. crassifolia Swingle; f: F. obovata Tanaka)


下载: 全尺寸图片幻灯片

表1用于金柑适生范围预测的18个环境因子
Table1.Environment factors used to predict the potential distribution area of Fortunella
代码 Code描述 Description代码 Code描述 Description
Bio2昼夜温差月均值 Monthly mean of diurnal temperature rangeTmax44月最高温度 Maximum temperature of April
Bio3等温性 IsothermalityPrec44月降雨量 Precipitation of April
Bio5最热月份最高温度 Max temperature of the warmest monthTmin66月最小温度 Minimum temperature of June
Bio8最湿季度平均温度 Mean temperature of the wettest quarterTmax66月最高温度 Maximum temperature of June
Bio14最干月降雨量 Precipitation of the driest monthPrec66月降雨量 Precipitation of June
Bio15降水量变异系数 Variation coefficient of precipitation Tmin77月最小温度 Minimum temperature of July
Bio18最暖季度降水量 Precipitation of warmest quarterPrec77月降雨量 Precipitation of July
Bio19最冷季度平均降水量 Precipitation of the coldest quarterPrec1010月降雨量 Precipitation of October
Tmin22月最低温度 Minimum temperature of FebruaryPrec1212月降雨量 Precipitation of December


下载: 导出CSV
表2金柑属6个种的主要气候因子贡献率及气候因子参数范围
Table2.Relative contributions of the main Climatic variables to suitable distribution of six Fortunella species
种名 Species环境因子 Climatic factor相对贡献率 Contribution rate (%)气候参数范围 Climatic factor range
山金柑 F. hindsii Swingle6月降雨量 Precipitation of June42.5200~250 mm
4月降雨量 Precipitation of April30.8145~225 mm
等温性 Isothermality18.228.5~35.0
罗浮 F. margarita Swingle6月降雨量 Precipitation of June45.9200~300 mm
等温性 Isothermality12.928.5~35.0
最干月降雨量 Precipitation of driest month6.426.5~49.0 mm
2月最低温度 Minimum temperature of February6.15~10 ℃
4月降雨量 Precipitation of April6.1145~225 mm
7月最低温度 Minimum temperature of July4.723~26 ℃
罗纹 F. japonica Swingle6月降雨量 Precipitation of June41.6133~166 mm
等温性 Isothermality13.525~35
7月最低温度 Minimum temperature of July8.923~26 ℃
最干月降雨量 Precipitation of driest month8.637.5~50.0 mm
最暖季度平均降雨量 Precipitation of warmest quarter8.0403~750 mm
4月降雨量 Precipitation of April6.8132~150 mm
长叶金柑 F. polyandra Tanaka最暖季度平均降雨量 Precipitation of warmest quarter23.7500~2000 mm
6月最低温度 Minimum temperature of June17.523.2~30.0 ℃
2月最低温度 Minimum temperature of February16.73.2~17.5 ℃
12月降雨量 Precipitation of December9.632~100 mm
7月降雨量 Precipitation of July8.5150~500 mm
金弹 F. crassifolia Swingle6月降雨量 Precipitation of June43.6150~350 mm
等温性 Isothermality18.915~35
4月降雨量 Precipitation of April14.3150~275 mm
最暖季度平均降雨量 Precipitation of warmest quarter9.2333~666 mm
7月最低温度 Minimum temperature of July6.024~26 ℃
长寿金柑 F. obovata Tanaka最暖季度平均降雨量 Precipitation of warmest quarter42.4457~832 mm
6月降雨量 Precipitation of June18.9166~400 mm
等温性 Isothermality12.925~35
7月最低温度 Minimum temperature of July12.323.2~25.0 ℃


下载: 导出CSV

参考文献(28)
[1]SWINGLE W T, TEECE P C. The botany and citrus and its wild relatives[J]. Citrus Industry, 1967, 1: 190?430
[2]叶荫民. 中国金柑种质资源[J]. 作物品种资源, 1983, (4): 2?5
YE Y M. Germplasm resources of Fortunella in China[J]. China Seed Industry, 1983, (4): 2?5
[3]LOU S N, LAI Y C, HUANG J D, et al. Drying effect on flavonoid composition and antioxidant activity of immature kumquat[J]. Food Chemistry, 2015, 171: 356?363 doi: 10.1016/j.foodchem.2014.08.119
[4]ZHANG J C, TAO N G, XU Q, et al. Functional characterization of Citrus PSY gene in Hongkong kumquat (Fortunella hindsii Swingle)[J]. Plant Cell Reports, 2009, 28(11): 1737?1746 doi: 10.1007/s00299-009-0774-3
[5]林大盛, 吴方崇. 我国金柑分布和种类[J]. 中国柑桔, 1987, 16(1): 3?5
LIN D S, WU F C. Distribution and species of Fortunlla in China[J]. South China Fruits, 1987, 16(1): 3?5
[6]REINKING O A. Diseases of economic plants in southern China[J]. Philippine Agriculturist, 1919, 8: 109?135
[7]KUMAR S, JENA S N, NAIR N K. ISSR polymorphism in Indian wild orange (Citrus indica Tanaka, Rutaceae) and related wild species in Northeast India[J]. Scientia Horticulturae, 2010, 123(3): 350?359 doi: 10.1016/j.scienta.2009.10.008
[8]崔德珍. 湖南省金柑种质资源的初步研究[J]. 湖南农学院学报, 1987, 13(4): 29?35
CUI D Z. A preliminary study on kumquat (Fortunella) germplasm resources in Hunan[J]. Journal of Hunan Agricultural University, 1987, 13(4): 29?35
[9]黄新忠, 雷龑, 陈小明, 等. 福建山橘、金豆野生资源调查与分析[J]. 植物遗传资源学报, 2010, 11(4): 509?513
HUANG X Z, LEI Y, CHEN X M, et al. Investigation and analysis of wild Fortunella hindsii and Fortunella venosa resources in Fujian[J]. Journal of Plant Genetic Resources, 2010, 11(4): 509?513
[10]王运生, 谢丙炎, 万方浩, 等. ROC曲线分析在评价入侵物种分布模型中的应用[J]. 生物多样性, 2007, 15(4): 365?372 doi: 10.3321/j.issn:1005-0094.2007.04.005
WANG Y S, XIE B Y, WAN F H, et al. Application of ROC curve analysis in evaluating the performance of alien species’ potential distribution models[J]. Biodiversity Science, 2007, 15(4): 365?372 doi: 10.3321/j.issn:1005-0094.2007.04.005
[11]ELITH J, GRAHAM C H, ANDERSON R P, et al. Novel methods improve prediction of species’ distributions from occurrence data[J]. Ecography, 2006, 29(2): 129?151 doi: 10.1111/j.2006.0906-7590.04596.x
[12]PEARSON R G, RAXWORTHY C J, NAKAMURA M, et al. Original article: predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar[J]. Journal of Biogeography, 2006, 34(1): 102?117 doi: 10.1111/j.1365-2699.2006.01594.x
[13]CAO B, BAI C K, ZHANG L L, et al. Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China[J]. Journal of Plant Ecology, 2016, 9(6): 742?751 doi: 10.1093/jpe/rtw009
[14]王茹琳, 李庆, 何仕松, 等. 中华猕猴桃在中国潜在分布及其对气候变化响应的研究[J]. 中国生态农业学报, 2018, 26(1): 27?37
WANG R L, LI Q, HE S S, et al. Potential distribution of Actinidia chinensis in China and its predicted response to climate change[J]. Chinese Journal of Eco-Agriculture, 2018, 26(1): 27?37
[15]CHEJARA V K, KRITICOS D J, KRISTIANSEN P, et al. The current and future potential geographical distribution of Hyparrhenia hirta[J]. Weed Research, 2010, 50(2): 174?184 doi: 10.1111/j.1365-3180.2010.00765.x
[16]MA B B, SUN J. Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model[J]. BMC Ecology, 2018, 18(1): 10 doi: 10.1186/s12898-018-0165-0
[17]李颖, 姜小龙, 邓敏, 等. 乌冈栎的潜在分布模拟及分析[J]. 生态学杂志, 2017, 36(10): 2971?2978
LI Y, JIANG X L, DENG M, et al. Potential distribution modeling and analysis of Quercus phillyraeoides[J]. Chinese Journal of Ecology, 2017, 36(10): 2971?2978
[18]YANG X Q, KUSHWAHA S P S, SARAN S, et al. Maxent modeling for predicting the potential distribution of medicinal plant, Justicia adhatoda L. in lesser Himalayan foothills[J]. Ecological Engineering, 2013, 51: 83?87 doi: 10.1016/j.ecoleng.2012.12.004
[19]吴建国, 周巧富. 中国嵩草属植物地理分布模式和适应的气候特征[J]. 植物生态学报, 2012, 36(3): 199?221 doi: 10.3724/SP.J.1258.2012.00199
WU J G, ZHOU Q F. Geographical distribution pattern and climate characteristics of adaptation for Kobresia in China[J]. Chinese Journal of Plant Ecology, 2012, 36(3): 199?221 doi: 10.3724/SP.J.1258.2012.00199
[20]PEARCE J, FERRIER S. Evaluating the predictive performance of habitat models developed using logistic regression[J]. Ecological Modelling, 2000, 133(3): 225?245 doi: 10.1016/S0304-3800(00)00322-7
[21]ELITH J, PHILLIPS S J, HASTIE T, et al. A statistical explanation of MaxEnt for ecologists[J]. Diversity and Distributions, 2011, 17(1): 43?57 doi: 10.1111/j.1472-4642.2010.00725.x
[22]朱耿平, 乔慧捷. Maxent模型复杂度对物种潜在分布区预测的影响[J]. 生物多样性, 2016, 24(10): 1189?1196 doi: 10.17520/biods.2016265
ZHU G P, QIAO H J. Effect of the Maxent model’ complexity on the prediction of species potential distributions[J]. Biodiversity Science, 2016, 24(10): 1189?1196 doi: 10.17520/biods.2016265
[23]MORENO R, ZAMORA R, MOLINA J R, et al. Predictive modeling of microhabitats for endemic birds in south Chilean temperate forests using maximum entropy (Maxent)[J]. Ecological Informatics, 2011, 6(6): 364?370 doi: 10.1016/j.ecoinf.2011.07.003
[24]MUSCARELLA R, GALANTE P J, SOLEY-GUARDIA M, et al. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models[J]. Methods in Ecology and Evolution, 2014, 5(11): 1198?1205 doi: 10.1111/2041-210X.12261
[25]WALTHER G R, POST E, CONVEY P, et al. Ecological responses to recent climate change[J]. Nature, 2002, 416(6879): 389?395 doi: 10.1038/416389a
[26]苗平生. 长叶金柑[J]. 果树科学, 1990, 7(4): 238?239
MIAO P S. Fortunella polyandra Tanaka[J]. Journal of Fruit Science, 1990, 7(4): 238?239
[27]PHILLIPS S J, ANDERSON R P, SCHAPIRE R E. Maximum entropy modeling of species geographic distributions[J]. Ecological Modelling, 2006, 190(3/4): 231?259
[28]祁春节. 中国柑橘产业的经济分析与政策研究[D]. 武汉: 华中农业大学, 2001
QI C J. The citrus industry in China: An economic analysis and policy studies[D]. Wuhan: Huazhong Agricultural University, 2001

相关话题/资源 植物 广西 湖南 湖南农业大学