删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

根系分泌物介导植物抗逆性研究进展与展望

本站小编 Free考研考试/2022-01-01

闂傚倸鍊搁崐鐑芥嚄閸洖绠犻柟鍓х帛閸嬨倝鏌曟繛鐐珔缂佲偓婢舵劖鐓欓柣鎴炆戦埛鎰版倵濮橆剦鐓奸柡宀嬬秮瀵噣宕掑顒€顬嗛梺璇插绾板秴鐣濋幖浣歌摕婵炴垶菤閺嬪海鈧箍鍎遍幊搴㈡叏鎼淬劍鈷戦弶鐐村椤斿鏌¢崨顖氣枅妤犵偛鍟伴幑鍕偘閳╁喚娼旈梺鍝勵槸閻楀啴寮插☉姘殰闁靛ě鍛紳婵炶揪绲肩划娆撳传閾忓湱纾奸悹鍥皺婢ф洟鏌i敐鍛Щ妞ゎ偅绻勯幑鍕传閸曨喒鍋撻崸妤佲拺闁告繂瀚崒銊╂煕閵娿儺鐓肩€规洩缍侀獮鍥偋閸垹骞楅梻浣虹帛閿氱€殿喖鐖奸獮鏍箛椤掑鍞甸悷婊冪灱閸掓帒鈻庨幘铏К闂侀潧绻堥崐鏍吹閸愵喗鐓冮柛婵嗗閳ь剚鎮傞幆鍐敃閿旇В鎷洪梺鍛婄☉閿曘儲寰勯崟顖涚厱闁圭偓娼欓崫娲煙椤旀枻鑰挎鐐叉喘閹囧醇濮橆厼顏归梻鍌欑閹诧繝骞愰崱娑樼鐟滃秹藟濮樿埖鈷戞慨鐟版搐閻掓椽鏌涢妸銈呭祮妞ゃ垺宀搁、姗€鎮㈡笟顖涢敜闂備礁鎲$粙鎴︽晝閵壯呯闁搞儯鍔婃禍婊堟煙閹佃櫕娅呴柣蹇婃櫆椤ㄣ儵鎮欏顔煎壎濠殿喖锕ュ钘夌暦濡ゅ懏鍋傞幖绮光偓鎵挎垿姊绘担瑙勫仩闁搞劏鍋愭禍鎼侇敂閸惊锕傛煙閹殿喖顣奸柡鍛倐閺屻劑鎮ら崒娑橆伓40%闂傚倸鍊搁崐椋庣矆娴i潻鑰块弶鍫氭櫅閸ㄦ繃銇勯弽顐粶缂佲偓婢舵劖鐓涚€广儱楠搁獮鏍煕閵娿儱鈧綊骞堥妸銉庣喖宕稿Δ鈧幗鐢告煟韫囨挾绠伴悗娑掓櫊楠炲牓濡搁妷搴e枛瀹曞綊顢欓幆褍缂氶梻浣筋嚙缁绘劕霉濮橆厾顩叉い蹇撶墕閽冪喖鏌曟繛鍨姉婵℃彃鐗撻弻褑绠涢敐鍛盎濡炪倕楠忛幏锟�
闂傚倸鍊搁崐宄懊归崶顒婄稏濠㈣泛顑囬々鎻捗归悩宸剰缂佲偓婢跺备鍋撻崗澶婁壕闂侀€炲苯澧伴柛鎺撳笧閹风姴顔忛鍏煎€梻浣规偠閸庮垶宕濆畝鍕剭妞ゆ劏鎳囬弨鑺ャ亜閺冨浂娼$憸鐗堝笒閺勩儵鏌″搴′簵闁绘帒锕ラ妵鍕疀閹捐泛顤€闂佺粯鎸荤粙鎴︹€︾捄銊﹀磯闁绘碍娼欐导鎰版⒑閸濆嫭顥犻柛鐘冲姉閹广垹鈽夊▎蹇曠獮濠碘槅鍨伴幖顐ょ尵瀹ュ棛绡€缁剧増锚婢ф煡鏌熺粙鍨毐闁伙絿鍏橀獮鎺楀箣閺冣偓閺傗偓闂備礁缍婇崑濠囧礈濮橀鏁婇柡鍥╁亹閺€浠嬫煟閹邦剚鈻曢柛銈囧枎閳规垿顢涘鐓庢缂備浇浜崑銈夊春閳ь剚銇勯幒鎴濐仾闁绘挸绻橀弻娑㈠焺閸愮偓鐣堕梺鍝勬4缁插潡鍩€椤掑喚娼愭繛娴嬫櫇缁辩偞绗熼埀顒勫Υ娴g硶妲堥柕蹇娾偓鏂ュ亾閻戣姤鐓冮弶鐐靛椤﹀嘲顭跨憴鍕闁宠鍨块、娆撴儗椤愵偂绨藉瑙勬礋椤㈡﹢鎮╅崗鍝ョ憹闂備礁鎼粙渚€鎮橀幇鐗堝仭闁归潧鍟块悧姘舵⒑閸涘﹥澶勯柛瀣椤㈡牠宕熼鍌滎啎闁诲海鏁告灙鐎涙繈姊虹紒姗嗘當缂佺粯甯掑嵄闁圭増婢樼猾宥夋煕椤愶絿绠樻い鎾存そ濮婅櫣绱掑Ο蹇d邯閹ê顫濈捄铏圭暰闂佹寧绻傞ˇ浼村煕閹烘垯鈧帒顫濋浣规倷婵炲瓨绮嶇换鍫ュ蓟閿涘嫪娌悹鍥ㄥ絻椤鈹戦悙鍙夘棑闁搞劋绮欓獮鍐ㄢ枎閹存柨浜鹃柣銏㈡暩閵嗗﹪鏌$€n偆澧垫慨濠呮缁辨帒螣閾忛€涙闂佽棄鍟存禍鍫曞蓟閻斿吋鍋い鏍ㄧ懃閹牏绱撴担浠嬪摵閻㈩垪鈧剚鍤曟い鏇楀亾闁糕斁鍋撳銈嗗笒鐎氼參宕戦敓鐘崇叆闁哄啫鍊告禍楣冩煛閸℃ḿ鐭岄柟鍙夋倐閹囧醇濠靛牜鍎岄柣搴ゎ潐閹搁娆㈠璺鸿摕婵炴垟鎳囬埀顒婄畵楠炲鈹戦崶鈺佽拫闂傚倷绀侀幉锟犳嚌妤e啫绠犻幖娣妽缁犳帡姊绘担绋挎倯缂佷焦鎸冲鎻掆槈濠ф儳褰洪梻鍌氬€风欢姘跺焵椤掑倸浠滈柤娲诲灡閺呭爼顢涢悙绮规嫼闂佸吋浜介崕閬嶅煕婵傛繂鈹戦悩鍨毄闁稿鍋涘玻鍨枎閹惧疇袝闁诲函缍嗛崰妤呭吹鐏炶娇鏃堟晲閸涱厽娈紓浣哄Х閸犳牠寮婚悢鐓庣畾闁绘鐗滃Λ鍕⒑鐠囪尙绠烘繛鍛礈閹广垹鈹戠€n亜鐎銈嗗姧缁蹭粙寮冲Δ鍐=濞达絾褰冩禍鐐節閵忥絽鐓愰柛鏃€鐗犻幃锟犳偄閸忚偐鍘撻悷婊勭矒瀹曟粌鈻庨幇顏嗙畾婵炲濮撮鍡涙偂閺囥垺鐓冮柛婵嗗閳ь剝顕х叅闁圭虎鍠楅悡娑㈡倶閻愯泛袚闁革綀顫夐妵鍕敃閿濆洨鐣甸梺浼欑悼閸忔ê鐣烽崼鏇炵厸闁告劏鏅滈惁鎺楁⒒閸屾瑦绁扮€规洖鐏氶幈銊╁级閹炽劍妞芥俊鍫曞醇濞戞鐫忛梻浣虹帛閸旀洟骞栭锔藉殝閻熸瑥瀚ㄦ禍婊堟煙閻戞ê鐏ラ柍褜鍓欑紞濠傜暦閹存繍娼ㄩ柍褜鍓熷濠氬即閻旇櫣顔曢悷婊冪Ф閳ь剚鍑归崳锝咁嚕閹惰姤鍋愮紓浣骨氶幏娲⒑閸涘﹦鈽夐柨鏇樺€楃划顓㈠箳閹捐尙绠氬銈嗗姧缁查箖藟閸喍绻嗘い鎰╁灪閸ゅ洭鏌涢埡瀣瘈鐎规洏鍔戦、娆撳箚瑜嶉崣濠囨⒒閸屾瑨鍏岀紒顕呭灦瀹曟繈鏁冮崒姘鳖槶濠电偛妫欓崝鏇犳閻愮鍋撻獮鍨姎妞わ缚鍗抽幃鈥斥枎閹炬潙鈧灚绻涢幋鐐垫喗缂傚倹鑹鹃…鑳檨闁告挾鍠栧濠氭偄閸忕厧鍓梺鍛婄缚閸庡疇鈪靛┑掳鍊楁慨鐑藉磻濞戙垺鐓€闁挎繂妫旂换鍡涙煟閹达絾顥夐幆鐔兼⒑闂堟侗妾у┑鈥虫处缁傚秴鐣¢幍铏杸闂佺粯鍔栧ḿ娆撴倶閿旇姤鍙忓┑鐘插閸も偓濡炪値鍘奸悘婵嬶綖濠婂牆鐒垫い鎺戝瀹撲線鏌涢幇鈺佸闁哄啫鐗嗗婵囥亜閺冨洤袚闁绘繍鍋婇弻锝嗘償閳ュ啿杈呴梺绋款儐閹瑰洭寮诲☉銏犵疀妞ゆ挾鍋涙慨銏犫攽閻愯尙澧㈤柛瀣尵閹广垹鈽夊锝呬壕闁汇垻娅ヨぐ鎺濇晛闁规儳澧庣壕鐣屸偓骞垮劙缁€浣圭妤e啯鈷掑〒姘e亾婵炰匠鍏炬稑螖閸涱厾鏌堥梺鍦檸閸犳牜绮婚悩缁樼厪闊洦娲栧暩闂佸搫妫楅澶愬蓟閳╁啫绶為幖娣灮閵嗗﹪姊虹拠鈥虫珯闁瑰嚖鎷�40%闂傚倸鍊搁崐椋庣矆娴i潻鑰块弶鍫氭櫅閸ㄦ繃銇勯弽顐粶缂佲偓婢舵劖鐓涚€广儱楠搁獮鏍煕閵娿儱鈧綊骞堥妸銉庣喖骞愭惔锝冣偓鎰板级閳哄倻绠炴慨濠呮缁瑩骞愭惔銏″缂傚倷娴囬褏绮旈悷鎵殾闁汇垹鎲¢弲婵嬫煃瑜滈崜鐔凤耿娓氣偓濮婅櫣绱掑Ο鍏煎櫑闂佺娅曢崝妤冨垝閺冨牜鏁嗛柛鏇ㄥ墰閸橆亪姊虹化鏇炲⒉妞ゃ劌鎳樺鎶芥偄閸忚偐鍘甸悗鐟板婢瑰棛绮旈悜妯镐簻闁靛繆鍩楅鍫濈厴闁硅揪绠戦悙濠勬喐濠婂嫬顕遍柛鈩冪⊕閳锋帒霉閿濆懏鍟為柟顖氱墦閺岋絽螖娴h櫣鐓夐悗瑙勬礃缁矂鍩ユ径鎰潊闁炽儱鍘栭幋閿嬩繆閻愵亜鈧牠鎮уΔ鍐煓闁圭偓鐪归埀顒€鎳橀幃婊堟嚍閵夈儰鍖栧┑鐐舵彧缁蹭粙骞楀⿰鍫熸櫖鐎广儱娲ㄧ壕鐓庮熆鐠虹尨鍔熷ù鐘灲濡焦寰勭€n剛鐦堥悷婊冪箲閹便劑骞橀鑲╂焾濡炪倖鐗滈崑娑氱不濮樿埖鐓曠€光偓閳ь剟宕戦悙鐑樺亗闁靛濡囩粻楣冩煙鐎电ǹ鈧垿宕烽娑樹壕婵ê宕。鑲╃磼缂佹ḿ娲撮柟顔瑰墲閹棃鍩ラ崱妤€唯缂傚倸鍊风粈渚€宕愰崫銉х煋鐟滅増甯囬埀顑跨窔瀵挳濮€閻欌偓濞煎﹪姊虹紒妯剁細闁轰焦鐡曢埅锟�9闂傚倸鍊搁崐鐑芥嚄閸洏鈧焦绻濋崶褎妲梺鍝勭▉閸撴瑧绱炲鈧缁樼瑹閳ь剟鍩€椤掑倸浠滈柤娲诲灡閺呭爼顢氶埀顒勫蓟濞戞瑧绡€闁告劏鏅涢埀顒佸姍閺岀喖顢涘顒佹婵犳鍠掗崑鎾绘⒑闂堟稓澧曢柟铏姍钘濇い鎰堕檮閳锋垹绱掗娑欑濠⒀冨级缁绘盯鎳犻鈧弸娑㈡煙椤曞棛绡€闁糕晪绻濆畷銊╊敊鐟欏嫬顏归梻鍌欑閹诧繝骞愰崱娑樼鐟滃秹藟濮樿埖鈷戞慨鐟版搐閻掓椽鏌涢妸鈺€鎲炬鐐村姍閹煎綊顢曢敍鍕暰闂佽瀛╃粙鎺曟懌婵犳鍨遍幐鎶藉箖瀹勬壋鏋庨煫鍥ㄦ惄娴犲ジ姊婚崒姘簽闁搞劏娉涢~蹇涙惞鐟欏嫬鍘归梺鍛婁緱閸ㄤ即鎮у鑸碘拺缂佸娼¢妤冣偓瑙勬处閸撶喎锕㈡担绯曟斀妞ゆ柨顫曟禒婊堟煕鐎n偅宕岄柡宀€鍠栭、娆撳Ω閵夛附鎮欓梺缁樺姇閿曨亪寮诲澶婁紶闁告洦鍋呭▓鏌ユ⒑鐠団€崇伈缂傚秳绀侀~蹇撁洪鍕唶闁硅壈鎻徊鍝勎i崼銉︹拺闁稿繐鍚嬮妵鐔兼煕閵娧勬毈濠碉紕鏁婚獮鍥级鐠侯煉绱查梻浣虹帛閸旀ḿ浜稿▎鎾嶅洭顢曢敂瑙f嫼闂佸憡绻傜€氬嘲危鐟欏嫨浜滈柟瀵稿仧閹冲洨鈧娲樼换鍫濈暦閵娧€鍋撳☉娆嬬細闁告ɑ鎮傞幃妤冩喆閸曨剙闉嶉梺鍛婄箓闁帮絽鐣烽幇鏉课у璺猴功閺屽牓姊洪崜鎻掍簴闁稿孩鐓¢幃锟犲即閻樺啿鏋戦柟鑹版彧缁插潡鎯屽▎鎾跺彄闁搞儯鍔庨埥澶愭煟閹烘垹浠涢柕鍥у楠炲鏁愰崨顓炐ラ梻浣呵圭换鎰板嫉椤掑倹宕叉繛鎴欏灩瀹告繃銇勯幇鈺佺仼妞ゎ剙顦靛铏规嫚閳ュ磭浠┑鈽嗗亜閸熸潙顕i锕€绀冮柍鍝勫€搁鎾剁磽娴e壊鍎撴繛澶嬫礃缁傛帡顢橀姀鈾€鎷绘繛杈剧到閹诧繝宕悙鐑樼厽闁靛⿵濡囬惌瀣煙瀹勭増鍤囨鐐存崌楠炴帒顓奸崪浣诡棥濠电姷鏁搁崑鐘诲箵椤忓棛绀婂〒姘e亾鐎殿喗鐓¢幊鐘活敆閸愩剱锟犳⒑鐟欏嫬鍔跺┑顔哄€濋幃锟犲即閻斿墎绠氶梺闈涚墕鐎氼噣藝閿曞倹鐓欓柛蹇撳悑閸婃劙鏌$仦鐣屝ユい褌绶氶弻娑滅疀閺冨倶鈧帞绱掗鑲╁闁瑰嘲鎳樺畷鐑筋敇瑜庨柨銈夋⒒娴e憡鎯堟繛灞傚姂瀹曚即骞樼拠鑼幋閻庡箍鍎遍ˇ顖滅不閹惰姤鐓欓柟顖滃椤ュ鏌i幒鎴犱粵闁靛洤瀚伴獮瀣攽閸粏妾搁梻浣呵归敃銉ノg€n剛纾介柛灞捐壘閳ь剟顥撶划鍫熺瑹閳ь剙顕i悽鍓叉晢闁逞屽墴閳ユ棃宕橀钘夌檮婵犮垹鍘滈弲婊堟儎椤栨氨鏆︾紒瀣嚦閺冨牆鐒垫い鎺戝暟缁犺姤绻濋悽闈涗哗闁规椿浜炵槐鐐哄焵椤掍胶绠鹃柛婊冨暟缁夘喚鈧娲╃紞渚€宕洪埀顒併亜閹哄秷鍏岀紒鐘荤畺閺岀喓鈧數枪娴狅箓鏌i幘鍗炲姢缂佽鲸甯℃俊鎼佹晜婵劒铏庨梻浣虹《閺備線宕戦幘鎰佹富闁靛牆妫楅悘锕傛倵缁楁稑鎳愰惌鍫澝归悡搴f憼闁绘挾鍠愰妵鍕疀閹炬潙娅ら柣蹇撻獜缁犳捇寮婚悢纰辨晩闁兼亽鍎禒銏ゆ⒑鏉炴壆鍔嶉柛鏃€鐟ラ悾鐑藉醇閺囩偟鍘搁梺绋挎湰缁嬫垿宕濆鈧濠氬磼濞嗘埈妲梺纭咁嚋缁绘繈骞婂┑瀣鐟滃宕戦幘鎰佹僵闁绘挸楠搁埛瀣節绾板纾块柡浣筋嚙閻g兘宕奸弴銊︽櫌闂佺ǹ鏈銊╁Χ閿曞倹鈷掑ù锝呮啞閸熺偤鏌涢弮鈧悧鐐哄Φ閹版澘绀冩い鏃傛櫕閸樻劙姊绘笟鍥у缂佸鏁婚幃陇绠涘☉娆戝幈闂佸疇妫勫Λ妤呯嵁濡ゅ懏鍊垫慨妯煎亾鐎氾拷
毛梦雪1, 2,,
朱峰1,,
1.中国科学院遗传与发育生物学研究所农业资源研究中心/河北省土壤生态学重点实验室/中国科学院农业水资源重点实验室 石家庄 050022
2.中国科学院大学 北京 100049
基金项目:中国科学院科技服务网络计划项目(KFJ-STS-QYZD-160)和中国科学院“****”项目资助

详细信息
作者简介:毛梦雪, 主要从事植物介导地上地下互作机制研究。E-mail: maomengxue18@mails.ucas.ac.cn
通讯作者:朱峰, 主要从事植物介导地上地下互作机制研究。E-mail: zhufeng@sjziam.ac.cn
中图分类号:S181

计量

文章访问数:305
HTML全文浏览量:56
PDF下载量:141
被引次数:0
出版历程

收稿日期:2021-05-30
录用日期:2021-07-16
网络出版日期:2021-08-20
刊出日期:2021-10-01

Progress and perspective in research on plant resistance mediated by root exudates

MAO Mengxue1, 2,,
ZHU Feng1,,
1. Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences / Hebei Key Laboratory of Soil Ecology / Key Laboratory of Agricultural Water Resources, Chinese Academy of Sciences, Shijiazhuang 050022, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
Funds:This study was supported by the Science and Technology Service Network Initiative of Chinese Academy of Sciences (KFJ-STS-QYZD-160) and the 100-Talent Project of Chinese Academy of Sciences

More Information
Corresponding author:E-mail: zhufeng@sjziam.ac.cn


摘要
HTML全文
(1)(0)
参考文献(65)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:根系分泌物是由植物根系主动或被动分泌的多种生物化学物质, 在介导植物根际微环境间的物质交换、能量传递和信息交流中具有重要作用, 是植物响应外界胁迫的重要途径。生物和非生物胁迫会改变根系分泌物的组成和数量, 使植物根系分泌物中的防御性化合物含量增加。植物运用不同的根系分泌物模式抵御生物和非生物胁迫, 包括释放有毒物质直接防御、释放挥发性物质吸引天敌以及与微生物互作抵御生物胁迫; 释放具有渗透调节功能及抗氧化能力的根系分泌物以及协同激素信号抵抗非生物胁迫。此外, 根系分泌物的流动局部地提高了许多常见代谢物的浓度, 不仅可以改变土壤的理化性质及微生物活性, 还会影响土壤-植物界面的许多生理生化过程, 直接或间接地提高植物抗逆性。本文综述了生物与非生物胁迫对植物根系分泌物组成和数量的影响, 总结了根系分泌物介导植物防御生物与非生物胁迫的方式, 并对未来的研究方向进行了展望, 旨在为更深层次地研究植物在逆境胁迫下的适应性机制提供参考。
关键词:根系分泌物/
生物胁迫/
非生物胁迫/
土壤微生物/
植物抗逆性
Abstract:Root exudates are a variety of biochemical substances actively or passively secreted by plant roots that play an important role in mediating material exchange, energy transfer and information exchange in plant rhizosphere microenvironments, as well as in plant responses to environmental stresses. Biotic and abiotic stresses can change the composition and quantity of root exudates and increase the content of defensive compounds in plant root exudates. Plants use different root exudates to resist biotic and abiotic stresses, including releasing toxic substances for direct defense, releasing volatile substances to attract natural enemies, interacting with microorganisms to resist biotic stresses, releasing root exudates with osmotic regulation and antioxidant capacity and coordinating hormone signals to resist abiotic stress. Additionally, root exudate flow increases the concentration of many common metabolites, changing the soil physical and chemical properties and microbial activities, and affecting the physiological and biochemical processes at the soil-plant interface, thereby, directly or indirectly improving plant stress resistance. In this paper, the effects of biotic and abiotic stresses on the composition and quantity of plant root exudates were reviewed, the mechanisms of plant defense against biotic and abiotic stresses mediated by root exudates were summarized, and the aspects needed to be further studied were also suggested, to provide a reference for further research on the adaptive mechanism of plants under stress.
Key words:Root exudates/
Biotic stress/
Abiotic stress/
Soil microorganism/
Plant resistance

HTML全文


图1根系分泌物介导的植物对生物与非生物胁迫响应模型
根系分泌物介导植物对环境胁迫的应答机制。A: 根系分泌物介导植物抵御非生物胁迫。B: 植物根系分泌物介导植物对地上植食性昆虫、病原菌的防御。C: 植物根系分泌物介导植物对地下植食性昆虫的防御。D: 植物根系分泌物介导植物对地下病原菌的防御。蓝色箭头表示诱导/促进作用, 红色箭头表示防御作用。Root exudates mediate the response mechanism of plants to environmental stress. A: root exudates-mediated plant resistance to abiotic stresses; B: root exudates-mediated plant defense against aboveground herbivores and pathogens; C: root exudates-mediated plant defense against underground herbivores; D: root exudates-mediated plant defense against underground pathogens. Blue arrows indicate induction/promotion, the red arrow indicates defense.
Figure1.Model of root exudates-mediated plant responses to biotic and abiotic stresses


下载: 全尺寸图片幻灯片


参考文献(65)
[1]BAETZ U, MARTINOIA E. Root exudates: the hidden part of plant defense[J]. Trends in Plant Science, 2014, 19(2): 90?98 doi: 10.1016/j.tplants.2013.11.006
[2]WEN F S, VANETTEN H D, TSAPRAILIS G, et al. Extracellular proteins in pea root tip and border cell exudates[J]. Plant Physiology, 2007, 143(2): 773?783 doi: 10.1104/pp.106.091637
[3]CANARINI A, KAISER C, MERCHANT A, et al. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli[J]. Frontiers in Plant Science, 2019, 10: 157
[4]SANCHEZ-ARCOS C, KAI M, SVATO? A, et al. Untargeted metabolomics approach reveals differences in host plant chemistry before and after infestation with different pea aphid host races[J]. Frontiers in Plant Science, 2019, 10: 188 doi: 10.3389/fpls.2019.00188
[5]VIVES-PERIS V, GóMEZ-CADENAS A, PéREZ-CLEMENTE R M. Citrus plants exude proline and phytohormones under abiotic stress conditions[J]. Plant Cell Reports, 2017, 36(12): 1971?1984 doi: 10.1007/s00299-017-2214-0
[6]CALVO O C, FRANZARING J, SCHMID I, et al. Root exudation of carbohydrates and cations from barley in response to drought and elevated CO2[J]. Plant and Soil, 2019, 438(1/2): 127?142
[7]CARVALHAIS L C, DENNIS P G, FEDOSEYENKO D, et al. Root exudation of sugars, amino acids, and organic acids by maize as affected by nitrogen, phosphorus, potassium, and iron deficiency[J]. Journal of Plant Nutrition and Soil Science, 2011, 174(1): 3?11 doi: 10.1002/jpln.201000085
[8]LOMBARDI N, VITALE S, TURRà D, et al. Root exudates of stressed plants stimulate and attract Trichoderma soil fungi[J]. Molecular Plant-Microbe Interactions?, 2018, 31(10): 982?994
[9]SURENDER REDDY P, JOGESWAR G, RASINENI G K, et al. Proline over-accumulation alleviates salt stress and protects photosynthetic and antioxidant enzyme activities in transgenic sorghum[Sorghum bicolor (L.) Moench[J]. Plant Physiology and Biochemistry, 2015, 94: 104?113 doi: 10.1016/j.plaphy.2015.05.014
[10]BADRI D V, VIVANCO J M. Regulation and function of root exudates[J]. Plant, Cell & Environment, 2009, 32(6): 666?681
[11]吴彩霞, 傅华. 根系分泌物的作用及影响因素[J]. 草业科学, 2009, 26(9): 24?29 doi: 10.3969/j.issn.1001-0629.2009.09.005
WU C X, FU H. Effects and roles of root exudates[J]. Pratacultural Science, 2009, 26(9): 24?29 doi: 10.3969/j.issn.1001-0629.2009.09.005
[12]GERA HOL W H, MACEL M, VAN VEEN J A, et al. Root damage and aboveground herbivory change concentration and composition of pyrrolizidine alkaloids of Senecio jacobaea[J]. Basic and Applied Ecology, 2004, 5(3): 253?260
[13]HOYSTED G A, BELL C A, LILLEY C J, et al. Aphid colonization affects potato root exudate composition and the hatching of a soil borne pathogen[J]. Frontiers in Plant Science, 2018, 9: 1278 doi: 10.3389/fpls.2018.01278
[14]BEZEMER T M, VAN DAM N M. Linking aboveground and belowground interactions via induced plant defenses[J]. Trends in Ecology & Evolution, 2005, 20(11): 617?624
[15]HU L F, ROBERT C A M, CADOT S, et al. Root exudate metabolites drive plant-soil feedbacks on growth and defense by shaping the rhizosphere microbiota[J]. Nature Communications, 2018, 9: 2738 doi: 10.1038/s41467-018-05122-7
[16]BEZEMER T M, WAGENAAR R, VAN DAM N M, et al. Above- and below-ground terpenoid aldehyde induction in cotton, Gossypium herbaceum, following root and leaf injury[J]. Journal of Chemical Ecology, 2004, 30(1): 53?67 doi: 10.1023/B:JOEC.0000013182.50662.2a
[17]MARAK H B, BIERE A, VAN DAMME J M M. Systemic, genotype-specific induction of two herbivore-deterrent iridoid glycosides in Plantago lanceolata L. in response to fungal infection by Diaporthe adunca (rob.) Niessel[J]. Journal of Chemical Ecology, 2002, 28(12): 2429?2448
[18]ROBERT C A M, VEYRAT N, GLAUSER G, et al. A specialist root herbivore exploits defensive metabolites to locate nutritious tissues[J]. Ecology Letters, 2012, 15(1): 55?64 doi: 10.1111/j.1461-0248.2011.01708.x
[19]RASMANN S, K?LLNER T G, DEGENHARDT J, et al. Recruitment of entomopathogenic nematodes by insect-damaged maize roots[J]. Nature, 2005, 434(7034): 732?737 doi: 10.1038/nature03451
[20]ALI J G, ALBORN H T, STELINSKI L L. Subterranean herbivore-induced volatiles released by Citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes[J]. Journal of Chemical Ecology, 2010, 36(4): 361?368 doi: 10.1007/s10886-010-9773-7
[21]LEE B, LEE S, RYU C M. Foliar aphid feeding recruits rhizosphere bacteria and primes plant immunity against pathogenic and non-pathogenic bacteria in pepper[J]. Annals of Botany, 2012, 110(2): 281?290 doi: 10.1093/aob/mcs055
[22]SONG G C, LEE S, HONG J, et al. Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation[J]. The New Phytologist, 2015, 207(1): 148?158 doi: 10.1111/nph.13324
[23]EISENHAUER N, LANOUE A, STRECKER T, et al. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass[J]. Scientific Reports, 2017, 7(1): 1?8 doi: 10.1038/s41598-016-0028-x
[24]YUAN J, ZHAO J, WEN T, et al. Root exudates drive the soil-borne legacy of aboveground pathogen infection[J]. Microbiome, 2018, 6(1): 156 doi: 10.1186/s40168-018-0537-x
[25]PHILLIPS D A, FOX T C, KING M D, et al. Microbial products trigger amino acid exudation from plant roots[J]. Plant Physiology, 2004, 136(1): 2887?2894 doi: 10.1104/pp.104.044222
[26]OZAN A, SAFIR G R, NAIR M G. Persistence of isoflavones formononetin and biochanin A in soil and their effects on soil microbe populations[J]. Journal of Chemical Ecology, 1997, 23(2): 247?258 doi: 10.1023/B:JOEC.0000006357.18358.14
[27]DARDANELLI M S, DE CóRDOBA F J F, ESTéVEZ J, et al. Changes in flavonoids secreted by Phaseolus vulgaris roots in the presence of salt and the plant growth-promoting rhizobacterium Chryseobacterium balustinum[J]. Applied Soil Ecology, 2012, 57: 31?38 doi: 10.1016/j.apsoil.2012.01.005
[28]HENRY A, DOUCETTE W, NORTON J, et al. Changes in crested wheatgrass root exudation caused by flood, drought, and nutrient stress[J]. Journal of Environmental Quality, 2007, 36(3): 904?912 doi: 10.2134/jeq2006.0425sc
[29]KSOURI R, MEGDICHE W, DEBEZ A, et al. Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima[J]. Plant Physiology and Biochemistry, 2007, 45(3/4): 244?249
[30]NAVARRO J M, FLORES P, GARRIDO C, et al. Changes in the contents of antioxidant compounds in pepper fruits at different ripening stages, as affected by salinity[J]. Food Chemistry, 2006, 96(1): 66?73
[31]DE ABREU I N, MAZZAFERA P. Effect of water and temperature stress on the content of active constituents of Hypericum brasiliense Choisy[J]. Plant Physiology and Biochemistry, 2005, 43(3): 241?248 doi: 10.1016/j.plaphy.2005.01.020
[32]GOMEZ-CADENAS A, VIVES V, ZANDALINAS S I, et al. Abscisic acid: a versatile phytohormone in plant signaling and beyond[J]. Current Protein & Peptide Science, 2015, 16(5): 413?434
[33]VIVES-PERIS V, MOLINA L, SEGURA A, et al. Root exudates from citrus plants subjected to abiotic stress conditions have a positive effect on rhizobacteria[J]. Journal of Plant Physiology, 2018, 228: 208?217 doi: 10.1016/j.jplph.2018.06.003
[34]ZHOU Y, TANG N Y, HUANG L J, et al. Effects of salt stress on plant growth, antioxidant capacity, glandular trichome density, and volatile exudates of Schizonepeta tenuifolia briq[J]. International Journal of Molecular Sciences, 2018, 19(1): E252 doi: 10.3390/ijms19010252
[35]HUGHES M, DONNELLY C, CROZIER A, et al. Effects of the exposure of roots of Alnus glutinosa to light on flavonoids and nodulation[J]. Canadian Journal of Botany, 1999, 77(9): 1311?1315
[36]JONES D L. Organic acids in the rhizosphere—a critical review[J]. Plant and Soil, 1998, 205(1): 25?44 doi: 10.1023/A:1004356007312
[37]RYALLS J M W, MOORE B D, RIEGLER M, et al. Amino acid-mediated impacts of elevated carbon dioxide and simulated root herbivory on aphids are neutralized by increased air temperatures[J]. Journal of Experimental Botany, 2015, 66(2): 613?623 doi: 10.1093/jxb/eru439
[38]MITH?FER A, BOLAND W. Plant defense against herbivores: chemical aspects[J]. Annual Review of Plant Biology, 2012, 63(1): 431?450 doi: 10.1146/annurev-arplant-042110-103854
[39]MAFFEI M E, MITH?FER A, BOLAND W. Insects feeding on plants: Rapid signals and responses preceding the induction of phytochemical release[J]. Phytochemistry, 2007, 68(22/23/24): 2946?2959
[40]TU X B, LIU Z K, ZHANG Z H. Comparative transcriptomic analysis of resistant and susceptible alfalfa cultivars (Medicago sativa L.) after thrips infestation[J]. BMC Genomics, 2018, 19(1): 1?8 doi: 10.1186/s12864-017-4368-0
[41]RASOOL S, VIDKJAER N H, HOOSHMAND K, et al. Seed inoculations with entomopathogenic fungi affect aphid populations coinciding with modulation of plant secondary metabolite profiles across plant families[J]. The New Phytologist, 2021, 229(3): 1715?1727 doi: 10.1111/nph.16979
[42]VAN TOL R W H M, VAN DER SOMMEN A T C, BOFF M I C, et al. Plants protect their roots by alerting the enemies of grubs[J]. Ecology Letters, 2001, 4(4): 292?294 doi: 10.1046/j.1461-0248.2001.00227.x
[43]HU L, MATEO P, YE M, et al. Plant iron acquisition strategy exploited by an insect herbivore[J]. Science, 2018, 361(6403): 694?697
[44]VAN DE MORTEL J E, DE VOS R C H, DEKKERS E, et al. Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101[J]. Plant Physiology, 2012, 160(4): 2173?2188 doi: 10.1104/pp.112.207324
[45]BADRI D V, CHAPARRO J M, ZHANG R F, et al. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome[J]. Journal of Biological Chemistry, 2013, 288(7): 4502?4512 doi: 10.1074/jbc.M112.433300
[46]MATILLA M A, RAMOS J L, BAKKER P A, et al. Pseudomonas putida KT2440 causes induced systemic resistance and changes in Arabidopsis root exudation[J]. Environmental Microbiology Reports, 2010, 2(3): 381?388
[47]PIETERSE C M, ZAMIOUDIS C, BERENDSEN R L, et al. Induced systemic resistance by beneficial microbes[J]. Annual Review of Phytopathology, 2014, 52: 347?375 doi: 10.1146/annurev-phyto-082712-102340
[48]BROECKLING C D, BROZ A K, BERGELSON J, et al. Root exudates regulate soil fungal community composition and diversity[J]. Applied and Environmental Microbiology, 2008, 74(3): 738?744 doi: 10.1128/AEM.02188-07
[49]RAY S, MISHRA S, BISEN K, et al. Modulation in phenolic root exudate profile of Abelmoschus esculentus expressing activation of defense pathway[J]. Microbiological Research, 2018, 207: 100?107
[50]RUDRAPPA T, CZYMMEK K J, PARE? P W, et al. Root-secreted malic acid recruits beneficial soil bacteria[J]. Plant Physiology, 2008, 148(3): 1547?1556 doi: 10.1104/pp.108.127613
[51]YANG J W, YI H S, KIM H, et al. Whitefly infestation of pepper plants elicits defence responses against bacterial pathogens in leaves and roots and changes the below-ground microflora[J]. Journal of Ecology, 2011, 99(1): 46?56 doi: 10.1111/j.1365-2745.2010.01756.x
[52]TU X B, ZHAO H L, ZHANG Z H. Transcriptome approach to understand the potential mechanisms of resistant and susceptible alfalfa (Medicago sativa L.) cultivars in response to aphid feeding[J]. Journal of Integrative Agriculture, 2018, 17(11): 2518?2527 doi: 10.1016/S2095-3119(17)61843-4
[53]ZHAO Y, WEI X H, JI X Z, et al. Endogenous NO-mediated transcripts involved in photosynthesis and carbohydrate metabolism in alfalfa (Medicago sativa L.) seedlings under drought stress[J]. Plant Physiology and Biochemistry, 2019, 141: 456?465 doi: 10.1016/j.plaphy.2019.06.023
[54]PER T S, KHAN N A, REDDY P S, et al. Approaches in modulating proline metabolism in plants for salt and drought stress tolerance: Phytohormones, mineral nutrients and transgenics[J]. Plant Physiology and Biochemistry, 2017, 115: 126?140 doi: 10.1016/j.plaphy.2017.03.018
[55]RUAN Y L. Sucrose metabolism: gateway to diverse carbon use and sugar signaling[J]. Annual Review of Plant Biology, 2014, 65: 33?67 doi: 10.1146/annurev-arplant-050213-040251
[56]SAFTNER R A, WYSE R E. Effect of plant hormones on sucrose uptake by sugar beet root tissue discs[J]. Plant Physiology, 1984, 74(4): 951?955 doi: 10.1104/pp.74.4.951
[57]PARIDA A K, DAS A B. Salt tolerance and salinity effects on plants: a review[J]. Ecotoxicology and Environmental Safety, 2005, 60(3): 324?349 doi: 10.1016/j.ecoenv.2004.06.010
[58]OGAWA K. Glutathione-associated regulation of plant growth and stress responses[J]. Antioxidants & Redox Signaling, 2005, 7(7/8): 973?981
[59]TEH C Y, MAHMOOD M, SHAHARUDDIN N A, et al. In vitro rice shoot apices as simple model to study the effect of NaCl and the potential of exogenous proline and glutathione in mitigating salinity stress[J]. Plant Growth Regulation, 2015, 75(3): 771?781 doi: 10.1007/s10725-014-9980-2
[60]WANG N Q, KONG C H, WANG P, et al. Root exudate signals in plant-plant interactions[J]. Plant, Cell & Environment, 2021, 44(4): 1044?1058
[61]IQBAL N, UMAR S, KHAN N A, et al. A new perspective of phytohormones in salinity tolerance: Regulation of proline metabolism[J]. Environmental and Experimental Botany, 2014, 100: 34?42 doi: 10.1016/j.envexpbot.2013.12.006
[62]PYE M F, DYE S M, RESENDE R S, et al. Abscisic acid as a dominant signal in tomato during salt stress predisposition to Phytophthora root and crown rot[J]. Frontiers in Plant Science, 2018, 9: 525 doi: 10.3389/fpls.2018.00525
[63]KHAN M I R, IQBAL N, MASOOD A, et al. Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation[J]. Plant Signaling & Behavior, 2013, 8(11): e26374
[64]CANARINI A, MERCHANT A, DIJKSTRA F A. Drought effects on Helianthus annuus and Glycine max metabolites: from phloem to root exudates[J]. Rhizosphere, 2016, 2: 85?97 doi: 10.1016/j.rhisph.2016.06.003
[65]OBURGER E, GRUBER B, SCHINDLEGGER Y, et al. Root exudation of phytosiderophores from soil-grown wheat[J]. New Phytologist, 2014, 203(4): 1161?1174 doi: 10.1111/nph.12868

相关话题/植物 生物 土壤 中国科学院 微生物