王晓婧,
杨长琴,
束红梅,
刘瑞显,
江苏省农业科学院经济作物研究所/农业部长江下游棉花与油菜重点实验室 南京 210014
基金项目:国家重点研发计划项目(2018YFD0201000)和江苏特粮特经产业技术体系集成创新中心项目(JATS[2020]152)资助
详细信息
作者简介:张国伟,主要从事作物栽培生理研究。E-mail: zgw_0721@163.com
通讯作者:刘瑞显,主要从事作物生理生态研究。E-mail: liuruixian2008@163.com
中图分类号:S565.1计量
文章访问数:100
HTML全文浏览量:8
PDF下载量:48
被引次数:0
出版历程
收稿日期:2021-02-09
录用日期:2021-05-28
网络出版日期:2021-07-13
刊出日期:2021-09-06
Effects of rotational pattern and fertilization application on soybean yield under straws returning of preceding crop
ZHANG Guowei,WANG Xiaojing,
YANG Changqin,
SHU Hongmei,
LIU Ruixian,
Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences / Key Laboratory of Cotton and Rapeseed in the Lower Reaches of the Yangtze River, Ministry of Agriculture, Nanjing 210014, China
Funds:This study was supported by the National Key Research and Development Program of China (2018YFD0201000) and Jiangsu Agricultural Industry Technology System (JATS[2020]152)
More Information
Corresponding author:E-mail: liuruixian2008@163.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:探讨不同轮作模式下作物秸秆还田和施肥对大豆产量形成的影响, 可为多元化轮作模式下大豆增产增效提供理论基础和实践依据。于2018—2020年在江苏省农业科学院大豆试验基地, 以前茬作物秸秆还田下轮作模式为主区, 设置小麦、大蒜、芥菜型油菜和空白(冬闲) 4个轮作模式; 肥料施用水平为副区, 设置不施肥和施三元复合肥(15∶15∶15) 225 kg·hm?2 2个施肥水平, 研究秸秆还田下不同轮作模式和施肥对大豆养分利用及产量形成的影响。结果表明, 轮作模式与施肥对大豆产量及产量构成影响显著, 且两因素对产量及产量构成、植株形态指标和病株率、土壤全氮和速效氮含量、生物量和氮素累积与分配等指标均存在极显著的互作效应。与冬闲-大豆模式相比, 其他轮作模式降低了土壤容重和速效氮含量, 提高了土壤有机质和全氮含量; 大蒜-大豆和芥菜-大豆轮作模式下株高、茎粗、底荚高度、分枝数、总生物量和籽粒生物量、总氮累积量和籽粒氮累积量最高, 利于产量形成, 最终产量较冬闲-大豆模式增加4.40%~10.30%和5.66%~7.09% (施肥处理)、4.88%~8.23%和2.19%~8.78% (不施肥)。小麦-大豆轮作模式抑制植株生长, 总生物量和籽粒生物量、总氮累积量和籽粒氮累积量均最低, 尽管生物量、氮素收获指数和氮素生产效率最高, 但产量最低, 较冬闲-大豆模式分别降低2.80%~7.30% (施肥处理)和7.45%~11.18% (不施肥)。此外, 小麦秸秆还田增加了大豆病株率, 而芥菜-大豆和大蒜-大豆轮作模式则降低了大豆病株率。施肥可以显著促进大豆生长, 降低病株率, 提高土壤全氮和速效氮含量、生物量及氮素累积量和收获密度, 尽管氮素收获指数和氮素利用效率较低, 但是显著提高了产量。与不施肥相比, 施肥使大蒜-大豆、芥菜-大豆和小麦-大豆轮作模式下大豆产量提高9.21%~13.01%、7.97%~14.02%和15.00%~15.91%。因此, 在生产中建议推广大蒜-大豆和芥菜-大豆轮作模式。小麦-大豆轮作模式中在小麦秸秆还田后必须增施肥料才能达到高产。
关键词:大豆/
轮作模式/
秸秆还田/
施肥/
产量
Abstract:Field experiments were conducted from 2018 to 2020 at the Soybean Experimental Station of the Jiangsu Academy of Agricultural Sciences in Nanjing, Jiangsu Province. A split-plot design was used to study the effects of straw returning and fertilizer application on the nutrient utilization and yield of soybeans under different rotation patterns. The main plot factor was different rotation patterns with straw returning of preceding crop of soybean (wheat–soybean, garlic–soybean, leaf mustard–soybean, and winter fallow–soybean), while the sub-plot factor was fertilizer application (no fertilizer and nitrogen [N], phosphorus [P], and potassium [K] compound fertilizer [15∶15∶15] at 225 kg?hm?2). The results showed that rotation pattern and fertilization application significantly affected the soybean yield and yield components under crop straw returning of preceding crop, and the two factors had significant interactive effects on the yield, yield components, plant morphological index, biomass, nitrogen accumulation and distribution, and disease rate of soybean, as well as soil total nitrogen, available nitrogen contents. Compared with the winter fallow–soybean planting pattern, the other three rotation patterns decreased soil bulk density and available nitrogen content but increased soil organic matter and total nitrogen contents. Plant height, stem diameter, height of the bottom pod, branch number per plant, total biomass, grain biomass, total nitrogen accumulation, and grain nitrogen accumulation were the highest under garlic–soybean and leaf mustard–soybean rotation patterns, which were beneficial for yield. The final yield increased by 4.40%–10.30% and 5.66%–7.09% under fertilization treatments and by 4.88%–8.23% and 2.19%–8.78% under no fertilization treatments compared to the winter fallow–soybean planting pattern, respectively. The wheat–soybean rotation pattern inhibited soybean plant growth, and the total biomass, grain biomass, total nitrogen accumulation, and grain nitrogen accumulation were the lowest. The harvest index of biomass and nitrogen and the nitrogen production efficiency were the highest, but the yield was the lowest in this case, decreasing by 2.80–7.30% in the fertilizer treatments and by 7.45%–11.18% in the no fertilizer treatment compared to the winter fallow–soybean planting pattern. Wheat straw returning increased the diseased plant rate, whereas the leaf mustard–soybean and garlic–soybean rotations decreased the rate of diseased plants. Compound fertilizer application promoted plant growth, reduced the rate of diseased plants, improved soil total nitrogen and available nitrogen contents, soybean biomass and nitrogen accumulation, and harvest density. Although harvest index and nitrogen use efficiency of soybean were low, the yield significantly increased. Compared with the no fertilizer application treatment, fertilizer application increased the soybean yields of the garlic–soybean, leaf mustard–soybean, and wheat–soybean rotations by 9.21%–13.01%, 7.97%–14.02%, and 15.00%–15.91%, respectively. Therefore, the garlic–soybean and leaf mustard–soybean rotation modes should be popularized. Under a wheat–soybean rotation pattern, high yield is achieved when wheat straw is returned to the field. In the wheat–soybean rotation, fertilizers must be applied after wheat straw is returned to the field to achieve high yield.
Key words:Soybean/
Rotation pattern/
Straw returning/
Fertilizer application/
Yield
HTML全文
表1大豆生长季前茬作物秸秆还田量和秸秆氮输入量
Table1.Straw and nitrogen amounts of returned straws of crops before soybean growing season
轮作模式/还田秸秆 Rotation pattern / returned straw | 肥料运筹 Fertilizer treatment | 2019 | 2020 | ||||||||
秸秆还田量 Amount of returned straw | 秸秆养分输入量 Nutrient input of straw | 秸秆还田量 Amount of returned straw | 秸秆养分输入量 Nutrient input of straw | ||||||||
N | P | K | N | P | K | ||||||
大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 2528 | 26.79 | 7.83 | 46.01 | 2601 | 27.57 | 8.01 | 45.58 | ||
F | 2528 | 26.79 | 7.83 | 46.01 | 2694 | 28.56 | 8.34 | 46.19 | |||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 3795 | 35.27 | 3.42 | 61.85 | 3855 | 35.85 | 3.58 | 62.18 | ||
F | 3795 | 35.27 | 3.42 | 61.85 | 3894 | 36.21 | 3.67 | 62.25 | |||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 7400 | 68.31 | 9.03 | 115.50 | 7548 | 68.69 | 9.44 | 114.03 | ||
F | 7400 | 68.31 | 9.03 | 115.50 | 7624 | 69.38 | 9.51 | 114.81 | |||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ||
F | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | |||
F0为不施肥, F为施用三元复合肥(15∶15∶15) 225 kg?hm?2。F0 indicates no fertilizer, F indicates application of ternary compound fertilizer (15∶15∶15) 225 kg?hm?2. |
下载: 导出CSV
表2前茬作物秸秆还田下轮作模式和施肥对大豆产量及产量构成的影响
Table2.Effects of rotation pattern and fertilization application on soybean yield and yield components with straw returning of preceding crop
年份 Year | 轮作模式/还田秸秆 Rotation pattern / returned straw | 施肥处理 Fertilization treatment | 单株荚数 Pod number per plant | 单株粒数 Seed number per plant | 百粒重 100-seed weight (g) | 实际收获密度 Harvest density (×104 plants?hm?2) | 产量 Yield (kg?hm?2) | |
2019 | 大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 37.4±2.19ab | 78.4±1.39bc | 22.24±0.74bcd | 19.95±0.47a | 3478.51±89.74b | |
F | 40.7±2.45a | 85.9±1.99a | 22.78±0.25a | 20.09±0.49a | 3931.22±124.34a | |||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 37.1±1.28ab | 77.7±1.64bc | 22.61±0.25ab | 20.12±0.47a | 3534.68±87.78b | ||
F | 40.2±3.27a | 84.4±2.62a | 22.69±0.51ab | 19.93±0.46a | 3816.67±119.04a | |||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 32.8±2.92c | 69.4±3.46e | 21.46±0.21e | 19.29±0.48d | 2872.91±86.98e | ||
F | 35.5±1.99bc | 76.5±2.70cd | 22.08±0.27cd | 19.56±0.56bc | 3303.92±89.33c | |||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 34.9±1.95bc | 72.8±2.35de | 21.88±0.27de | 19.65±0.60b | 3129.98±133.79d | ||
F | 37.2±1.50ab | 81.8±2.09ab | 22.47±0.27abc | 19.39±0.46cd | 3563.97±177.53b | |||
F 值 F value | 轮作模式 Rotation pattern (A) | 24.569** | 12.026** | 41.273** | 102.913** | 94.552** | ||
施肥水平 Fertilizer treatment (B) | 8.730* | 132.099** | 13.453** | 0.049 | 445.298** | |||
轮作模式×施肥水平 A×B | 0.053 | 0.581 | 1.035 | 8.041** | 4.367* | |||
2020 | 大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 36.8±1.28d | 78.8±1.72c | 22.18±0.22b | 19.97±0.48a | 3490.32±43.17d | |
F | 41.1±1.28a | 84.7±1.80a | 22.57±0.22a | 19.94±0.46a | 3811.89±86.62a | |||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 37.2±1.28d | 76.2±1.69d | 22.29±0.22b | 19.92±0.55a | 3383.41±58.17e | ||
F | 39.9±1.10b | 85.3±1.76a | 22.66±0.22a | 19.96±0.56a | 3858.06±54.39a | |||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 33.7±1.42e | 72.2±1.77f | 21.88±0.22c | 19.38±0.43b | 3061.53±76.24g | ||
F | 36.6±1.35d | 80.7±2.48b | 22.31±0.22b | 19.71±0.43a | 3548.62±64.32c | |||
冬闲-大豆/- Winter fallow-soybean/ - | F0 | 36.5±1.99d | 74.8±1.56e | 22.21±0.14b | 19.83±0.48a | 3294.37±96.97f | ||
F | 38.2±1.35c | 81.5±2.20b | 22.58±0.14a | 19.84±0.48a | 3651.10±89.09b | |||
F 值 F value | 轮作模式 Rotation pattern (A) | 112.903** | 64.314** | 12.076** | 6.069* | 165.329** | ||
施肥水平 Fertilizer treatment (B) | 545.514** | 785.811** | 3013.410** | 89.634** | 1780.104** | |||
轮作模式×施肥水平 A×B | 18.595** | 7.754** | 3.962 | 78.902** | 18.337** | |||
同列不同小写字母表示不同轮作模式及施肥处理间在P<0.05水平差异显著。*、**分别表示在P<0.05和P<0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level among fertilization treatments and rotation patterns. * and ** indicate significant effect at P<0.05 and P<0.01 levels, respectively. |
下载: 导出CSV
表3前茬作物秸秆还田下轮作模式和施肥对大豆形态指标和病株率的影响
Table3.Effects of rotation pattern and fertilization application on plant morphological and diseased plant rate of soybean with straw returning of preceding crop
年份 Year | 轮作模式/还田秸秆 Rotation pattern / returned straw | 施肥处理 Fertilization treatment | 株高 Plant height (cm) | 茎粗 Stem diameter (mm) | 底荚高度 Height of bottom pod (cm) | 分枝数 Branch number per plant | 病株率 Diseased plant rate (%) | |
2019 | 大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 75.5±1.11c | 7.28±0.25a | 16.3±0.31c | 3.3±0.17ef | 0.11±0.02d | |
F | 78.3±1.37a | 7.32±a0.07 | 17.2±0.32a | 4.0±0.26ab | 0.13±0.02d | |||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 75.2±1.25c | 7.36±0.07a | 15.8±0.31d | 3.5±0.26de | 0.13±0.02d | ||
F | 76.5±1.82b | 7.42±0.04a | 16.9±0.35b | 4.1±0.20a | 0.12±0.02d | |||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 66.2±1.33f | 6.11±0.07d | 14.4±0.29f | 3.1±0.26f | 1.21±0.17a | ||
F | 70.2±1.37e | 6.38±0.08c | 15.3±0.30e | 3.5±0.20de | 1.01±0.14b | |||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 69.6±1.45e | 6.28±0.17c | 15.8±0.52d | 3.6±0.17cd | 0.87±0.12bc | ||
F | 72.4±1.27d | 6.72±0.16b | 15.9±0.31d | 3.8±0.26bc | 0.85±0.12c | |||
F 值 F value | 轮作模式 Rotation pattern (A) | 384.592** | 231.247** | 337.685** | 10.015** | 133.333** | ||
施肥水平 Fertilizer treatment (B) | 182.866** | 56.636** | 294.502** | 108.300** | 143.765** | |||
轮作模式×施肥水平 A×B | 7.526* | 12.393** | 25.742** | 5.900* | 129.856** | |||
2020 | 大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 74.9±1.06d | 6.92±0.04b | 16.1±0.31c | 3.4±0.26cd | 0.08±0..02d | |
F | 78.0±1.37b | 7.21±0.03a | 16.7±0.31b | 3.9±0.35a | 0.10±0.02d | |||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 75.8±1.32c | 7.12±0.03a | 16.5±0.31b | 3.6±0.26abc | 0.09±0.02d | ||
F | 79.2±1.38a | 7.13±0.04a | 17.1±0.32a | 3.9±0.17a | 0.08±0.02d | |||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 69.3±1.37g | 6.03±0.03a | 15.1±0.30f | 3.2±0.20d | 1.32±0.19a | ||
F | 71.3±1.39f | 6.22±0.03d | 15.5±0.28e | 3.6±0.17abc | 1.14±0.16b | |||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 71.2±1.46f | 6.75±0.03c | 15.8±0.52d | 3.5±0.17bcd | 0.74±0.10c | ||
F | 73.5±1.54e | 6.77±0.21c | 15.7±0.44de | 3.8±0.20ab | 0.76±0.11c | |||
F 值 F value | 轮作模式 Rotation pattern (A) | 429.036** | 228.270** | 81.982** | 16.895** | 133.333** | ||
施肥水平 Fertilizer treatment (B) | 298.148** | 17.694** | 865.280** | 21.774** | 90.090** | |||
轮作模式×施肥水平 A×B | 4.895* | 5.050* | 129.114** | 0.355 | 147.748** | |||
同列不同小写字母表示不同轮作模式及施肥处理间在P<0.05水平差异显著。*、**分别表示在P<0.05和P<0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level among fertilization treatments and rotation patterns. * and ** indicate significant effect at P<0.05 and P<0.01 levels, respectively. |
下载: 导出CSV
表4前茬作物秸秆还田下轮作模式和施肥对生物量累积分配的影响
Table4.Effects of rotation pattern and fertilization application on biomass accumulation and allocation of soybean with straw returning of preceding crop
轮作模式/还田秸秆 Rotation pattern / returned straw | 施肥处理 Fertilization treatment | 2019 | 2020 | ||||||
总干重 Total dry weight (kg?hm?2) | 籽粒干重 Grain dry weight (kg?hm?2) | 收获指数 Harvest index | 总干重 Total dry weight (kg?hm?2) | 籽粒干重 Grain dry weight (kg?hm?2) | 收获指数 Harvest index | ||||
大蒜-大豆/大蒜 Garlic-soybean/garlic | F0 | 11 184.1±193.96d | 3061.1±62.18d | 27.37±0.25c | 11 604.3±287.28b | 3114.6±56.12cd | 26.84±0.48bcd | ||
F | 13 220.5±292.94a | 3459.8±91.54a | 26.17±0.46e | 13 043.0±259.44a | 3400.3±62.10a | 26.07±0.49cd | |||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 11 668.0±218.60c | 3114.2±84.51c | 26.69±0.45d | 11 168.7±193.71b | 3018.9±79.05de | 27.03±0.93bc | ||
F | 12 949.9±230.11ab | 3359.2±61.72b | 25.94±0.51e | 13 097.9±238.29a | 3438.2±62.46a | 26.25±0.73a | |||
小麦-大豆/小麦 Wheat-soybean/wheat | F0 | 8202.0±474.77f | 2529.5±78.56g | 30.84±0.53a | 9333.4±517.94c | 2743.1±66.60f | 29.39±1.29ab | ||
F | 9842.3±203.36e | 2908.4±84.88e | 29.55±0.51b | 11 162.6±460.53b | 3165.7±108.00bc | 28.36±1.29cd | |||
冬闲-大豆/- Winter fallow-soybean/- | F0 | 11 235.3±321.61d | 2754.9±80.11f | 24.52±0.50f | 11 663.2±262.47b | 2940.3±77.11e | 25.21±0.50cd | ||
F | 12 667.2±280.94b | 3140.2±64.04c | 24.79±0.49f | 12 081.6±958.34b | 3256.8±74.87b | 25.03±0.44d | |||
F 值 F value | 轮作模式 Rotation pattern (A) | 457.915** | 178.518** | 420.103** | 22.204** | 7.648* | 9.382* | ||
施肥水平 Fertilizer treatment (B) | 341.680** | 1608.851** | 157.077** | 76.637** | 30.757** | 63.080** | |||
轮作模式×施肥水平 A×B | 3.586 | 1345.338** | 36.428** | 4.631* | 643.437** | 4.308* | |||
同列不同小写字母表示不同轮作模式及施肥处理间在P<0.05水平差异显著。*、**分别表示在P<0.05和P<0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level among fertilization treatments and rotation patterns. * and ** indicate significant effect at P<0.05 and P<0.01 levels, respectively. |
下载: 导出CSV
表5前茬作物秸秆还田下轮作模式和施肥对氮素累积分配的影响
Table5.Effects of rotation pattern and fertilization application on nitrogen accumulation and allocation of soybean with straw returning of preceding crop
轮作模式/还田秸秆 Rotation pattern / returned straw | 施肥处理 Fertilization treatment | 总氮累积量 Total nitrogen accumulation (kg?hm?2) | 籽粒氮累积量 Grain nitrogen accumulation (kg?hm?2) | 氮收获指数 Harvest index of nitrogen | 氮素生产效率 Nitrogen production efficiency [kg?kg?1(N)] | |
大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 201.20±7.99d | 105.61±3.14d | 52.49±0.32cd | 17.29±0.27bc | |
F | 231.55±4.59a | 119.36±2.99a | 51.55±0.28e | 16.98±0.38de | ||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 199.41±6.69d | 107.44±3.85c | 53.88±0.49ab | 17.73±0.24a | |
F | 223.95±4.33b | 115.89±4.24b | 51.75±0.40de | 17.04±0.25de | ||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 159.98±6.96g | 87.27±2.06g | 54.55±0.33a | 17.96±0.29a | |
F | 189.11±5.34e | 100.34±2.91e | 53.06±0.29bc | 17.47±0.31b | ||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 182.64±3.65f | 95.04±3.50f | 52.04±0.69de | 17.14±0.23cd | |
F | 211.80±3.54c | 108.34±2.93c | 51.15±0.38e | 16.83±0.22e | ||
F 值 F value | 轮作模式 Rotation pattern (A) | 472.585** | 452.287** | 21.317** | 24.866** | |
施肥水平 Fertilizer treatment (B) | 1058.737** | 3465.151** | 101.791** | 366.792** | ||
轮作模式×施肥水平 A×B | 2.179 | 36.073** | 4.602* | 14.853** | ||
同列不同小写字母表示不同轮作模式及施肥处理间在P<0.05水平差异显著。*、**分别表示在P<0.05和P<0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level among fertilization treatments and rotation patterns. * and ** indicate significant effect at P<0.05 and P<0.01 levels, respectively. |
下载: 导出CSV
表6前茬作物秸秆还田下轮作模式和施肥对土壤容重和有机质含量的影响
Table6.Effects of rotation pattern and fertilization application on soil bulk density and organic matter content with straw returning of preceding crop
轮作模式/还田秸秆 Rotation pattern / returned straw | 施肥处理 Fertilization treatment | 2019 | 2020 | ||||||||||
容重 Bulk density (g?cm?3) | 有机质 Organic matter (g?kg?1) | 容重 Bulk density (g?cm?3) | 有机质 Organic matter (g?kg?1) | ||||||||||
V2 | R8 | V2 | R8 | V2 | R8 | V2 | R8 | ||||||
大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 1.29±0.03d | 1.43±0.04cd | 17.8±0.31cd | 18.3±0.26c | 1.25±0.02b | 1.44±0.03b | 18.1±0.31aa | 18.4±0.26bcd | ||||
F | 1.28±0.03e | 1.43±0.02cd | 17.9±0.38bc | 18.4±0.17c | 1.26±0.03b | 1.45±0.03b | 18.3±0.45a | 18.6±0.10abc | |||||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 1.28±0.04e | 1.45±0.04bc | 17.9±0.31bc | 18.6±0.20b | 1.26±0.03b | 1.44±0.03b | 18.2±0.32a | 18.7±0.17ac | ||||
F | 1.30±0.03c | 1.44±0.03c | 17.8±0.33cd | 18.4±0.30c | 1.25±0.03b | 1.43±0.03bc | 18.3±0.38a | 18.6±0.26abc | |||||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 1.26±0.03f | 1.39±0.04e | 18.2±0.32a | 18.8±0.20a | 1.24±0.02b | 1.41±0.03cd | 18.1±0.32a | 18.9±0.17a | ||||
F | 1.25±0.03g | 1.40±0.02de | 18.1±0.36ab | 18.7±0.17ab | 1.25±0.03b | 1.39±0.02d | 18.3±0.32a | 18.8±0.17ab | |||||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 1.32±0.03a | 1.48±0.03ab | 17.5±0.31e | 17.7±0.20d | 1.33±0.04a | 1.49±0.03a | 17.7±0.31b | 18.1±0.20d | ||||
F | 1.28±0.03b | 1.49±0.03a | 17.6±0.33de | 17.8±0.17d | 1.31±0.04a | 1.50±0.03a | 17.6±0.31b | 18.2±0.26cd | |||||
F 值 F value | 轮作模式 Rotation pattern (A) | 285.630** | 41.421** | 23.950** | 123.857** | 21.648** | 60.781** | 29.698** | 6.686* | ||||
施肥水平 Fertilizer treatment (B) | 2.8770 | 0.110 | 0.000 | 0.750 | 0.607 | 0.128 | 3.477 | 0.150 | |||||
轮作模式×施肥水平 A×B | 25.892** | 0.404 | 1.240 | 6.750* | 5.462* | 1.149 | 1.739 | 1.350 | |||||
同列不同小写字母表示不同轮作模式及施肥处理间在P<0.05水平差异显著。*、**分别表示在P<0.05和P<0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level among fertilization treatments and rotation patterns. * and ** indicate significant effect at P<0.05 and P<0.01 levels, respectively. |
下载: 导出CSV
表7不同轮作模式下秸秆还田和施肥对土壤全氮和速效氮含量的影响
Table7.Effects of rotation pattern and fertilization application on soil total nitrogen and available nitrogen contents with straw returning of preceding crop
轮作模式/还田秸秆 Rotation pattern / returned straw | 施肥处理 Fertilization treatment | 2019 | 2020 | ||||||||||
全氮 Total nitrogen (g?kg?1) | 速效氮 Available nitrogen (mg?kg?1) | 全氮 Total nitrogen (g?kg?1) | 速效氮 Available nitrogen (mg?kg?1) | ||||||||||
V2 | R8 | V2 | R8 | V2 | R8 | V2 | R8 | ||||||
大蒜-大豆/大蒜 Garlic-soybean / garlic | F0 | 0.98±0.05cd | 1.06±0.06c | 15.9±0.61d | 22.4±0.69d | 1.07±0.05cd | 1.09±0.07cd | 16.3±0.98d | 24.2±0.42de | ||||
F | 1.24±0.03ab | 1.24±0.05b | 22.7±0.69b | 26.9±1.32c | 1.28±0.06b | 1.32±0.05a | 22.5±0.54b | 27.5±0.53c | |||||
芥菜-大豆/芥菜 Leaf mustard-soybean / leaf mustard | F0 | 0.96±0.04d | 1.04±0.12c | 16.2±0.37d | 22.7±0.78d | 1.04±0.06d | 1.08±0.06d | 16.9±0.98cd | 23.9±0.55ef | ||||
F | 1.25±0.03a | 1.28±0.10ab | 23.1±0.43a | 27.4±0.58bc | 1.29±0.04ab | 1.33±0.10a | 22.8±0.42b | 28.2±0.50b | |||||
小麦-大豆/小麦 Wheat-soybean / wheat | F0 | 1.04±0.03c | 1.10±0.11c | 16.1±0.52d | 22.5±0.54d | 1.12±0.03c | 1.14±0.06c | 17.1±1.46cd | 23.6±0.43f | ||||
F | 1.28±0.03a | 1.33±0.05a | 23.4±0.48a | 26.8±1.04c | 1.32±0.07a | 1.38±0.06a | 22.9±0.46b | 27.9±0.48b | |||||
冬闲-大豆/- Winter fallow-soybean / - | F0 | 0.94±0.04d | 0.95±0.07d | 17.9±0.45c | 27.9±0.95b | 1.02±0.05d | 1.04±0.05d | 18.3±0.78c | 24.3±0.42d | ||||
F | 1.18±0.08b | 1.27±0.08ab | 22.4±0.43b | 30.4±0.66a | 1.23±0.05b | 1.26±0.07b | 24.9±2.69a | 28.6±0.50a | |||||
F 值 F value | 轮作模式 Rotation pattern (A) | 8.010* | 5.714* | 14.801** | 470.254** | 19.579** | 10.750** | 8.312* | 34.071** | ||||
施肥水平 Fertilizer treatment (B) | 546.336** | 229.488** | 182.808** | 724.233** | 192.857** | 487.118** | 225.891** | 9973.146** | |||||
轮作模式×施肥水平 A×B | 1.150 | 3.276 | 180.542** | 11.618** | 0.349 | 0.686 | 0.194 | 38.002** | |||||
同列不同小写字母表示不同轮作模式及施肥处理间在P<0.05水平差异显著。*、**分别表示在P<0.05和P<0.01水平影响显著。Different lowercase letters in the same column indicate significant differences at P<0.05 level among fertilization treatments and rotation patterns. * and ** indicate significant effect at P<0.05 and P<0.01 levels, respectively. |
下载: 导出CSV
参考文献
[1] | BLANCO-CANQUI H, LAL R. Corn stover removal impacts on micro-scale soil physical properties[J]. Geoderma, 2008, 145(3/4): 335?346 |
[2] | CHEN X W, ZHAO H B, LIU J F, et al. Winter wheat nitrogen utilization under different mulching practices on the Loess Plateau[J]. Agronomy Journal, 2020, 112(2): 1391?1405 doi: 10.1002/agj2.20105 |
[3] | ZUO Q S, KUAI J, ZHAO L, et al. The effect of sowing depth and soil compaction on the growth and yield of rapeseed in rice straw returning field[J]. Field Crops Research, 2017, 203: 47?54 doi: 10.1016/j.fcr.2016.12.016 |
[4] | 穆心愿, 赵霞, 谷利敏, 等. 秸秆还田量对不同基因型夏玉米产量及干物质转运的影响[J]. 中国农业科学, 2020, 53(1): 29?41 doi: 10.3864/j.issn.0578-1752.2020.01.003 MU X Y, ZHAO X, GULI M, et al. Effects of straw returning amount on grain yield, dry matter accumulation and transfer in summer maize with different genotypes[J]. Scientia Agricultura Sinica, 2020, 53(1): 29?41 doi: 10.3864/j.issn.0578-1752.2020.01.003 |
[5] | GASPAR E, NEVES H C. Chemical constituents in allelopathic straw of wheat (Triticum aestivum L.)[J]. Allelopathy Journal, 1995, 2(1): 79 |
[6] | 董明辉, 顾俊荣, 陈培峰, 等. 麦秸还田与氮肥互作对大穗型杂交粳稻不同部位枝梗和颖花形成的影响[J]. 中国农业科学, 2015, 48(22): 4437?4449 doi: 10.3864/j.issn.0578-1752.2015.22.005 DONG M H, GU J R, CHEN P F, et al. Effects of interaction of wheat straw residue with field and nitrogen applications on branches and spikelets formation at different positions in large panicle hybrid rice[J]. Scientia Agricultura Sinica, 2015, 48(22): 4437?4449 doi: 10.3864/j.issn.0578-1752.2015.22.005 |
[7] | REBAFKA F P, HEBEL A, BATIONO A, et al. Short- and long-term effects of crop residues and of phosphorus fertilization on pearl millet yield on an acid sandy soil in Niger, West Africa[J]. Field Crops Research, 1994, 36(2): 113?124 doi: 10.1016/0378-4290(94)90060-4 |
[8] | PRASAD R, GANGAIAH B, AIPE K C. Effect of crop residue management in a rice-wheat cropping system on growth and yield of crops and on soil fertility[J]. Experimental Agriculture, 1999, 35(4): 427?435 doi: 10.1017/S001447979935403X |
[9] | 李彦斌, 刘建国, 程相儒, 等. 秸秆还田对棉花生长的化感效应[J]. 生态学报, 2009, 29(9): 4942?4948 doi: 10.3321/j.issn:1000-0933.2009.09.042 LI Y B, LIU J G, CHENG X R, et al. The allelopathic effects of returning cotton stalk to soil on the growth of succeeding cotton[J]. Acta Ecologica Sinica, 2009, 29(9): 4942?4948 doi: 10.3321/j.issn:1000-0933.2009.09.042 |
[10] | SINGH S, SAVOY H J, YIN X H, et al. Phosphorus and potassium fertilizer rate verification for a corn-wheat-soybean rotation system in Tennessee[J]. Agronomy Journal, 2019, 111(4): 2060?2068 doi: 10.2134/agronj2018.12.0749 |
[11] | WU H W, HAIG T, PRATLEY J, et al. Biochemical basis for wheat seedling allelopathy on the suppression of annual ryegrass (Lolium rigidum)[J]. Journal of Agricultural and Food Chemistry, 2002, 50(16): 4567?4571 doi: 10.1021/jf025508v |
[12] | 王幸, 吴存祥, 齐玉军, 等. 麦秸处理和播种方式对夏大豆农艺性状及土壤物理性状的影响[J]. 中国农业科学, 2016, 49(8): 1453?1465 doi: 10.3864/j.issn.0578-1752.2016.08.003 WANG X, WU C X, QI Y J, et al. Effects of straw management and sowing methods on soybean agronomic traits and soil physical properties[J]. Scientia Agricultura Sinica, 2016, 49(8): 1453?1465 doi: 10.3864/j.issn.0578-1752.2016.08.003 |
[13] | 李帆, 王静, 武际, 等. 尿素硝酸铵调节碳氮比促进小麦秸秆堆肥腐熟[J]. 植物营养与肥料学报, 2019, 25(5): 832?840 doi: 10.11674/zwyf.18183 LI F, WANG J, WU J, et al. Fast production of wheat straw aerobic compost through regulating C/N ratio with urea ammonium nitrate solution[J]. Journal of Plant Nutrition and Fertilizers, 2019, 25(5): 832?840 doi: 10.11674/zwyf.18183 |
[14] | HUANG T, YANG H, HUANG C C, et al. Effect of fertilizer N rates and straw management on yield-scaled nitrous oxide emissions in a maize-wheat double cropping system[J]. Field Crops Research, 2017, 204: 1?11 doi: 10.1016/j.fcr.2017.01.004 |
[15] | 王建生, 李潇, 张海峰, 等. 大豆枯萎病菌尖孢镰孢遗传多样性及大豆品种抗性[J]. 植物病理学报, 2015, 45(2): 167?174 WANG J S, LI X, ZHANG H F, et al. Genetic diversity of Fusarium oxysporum and identification of resistance to soybean Fusarium wilt on soybean lines[J]. Acta Phytopathologica Sinica, 2015, 45(2): 167?174 |
[16] | 鲍士旦. 土壤农化分析[M]. 北京: 中国农业出版社, 2000 BAO S D. Soil and Agricultural Chemistry Analysis[M]. Beijing: Chinese Agricultural Press, 2000 |
[17] | 庄秋丽, 黄玉波, 姜秀芳, 等. 农作物秸秆还田及其有效还田方式的研究进展[J]. 中国农学通报, 2019, 35(22): 38?41 doi: 10.11924/j.issn.1000-6850.casb18050121 ZHUANG Q L, HUANG Y B, JIANG X F, et al. Straw returning and its effective returning method: research progress[J]. Chinese Agricultural Science Bulletin, 2019, 35(22): 38?41 doi: 10.11924/j.issn.1000-6850.casb18050121 |
[18] | NAKANO H, MORITA S, SHIGEMORI H, et al. Plant growth inhibitory compounds from aqueous leachate of wheat straw[J]. Plant Growth Regulation, 2006, 48(3): 215?219 |
[19] | GONG B, BLOSZIES S, LI X, et al. Efficacy of garlic straw application against root-knot Nematodes on tomato[J]. Scientia Horticulturae, 2013, 161: 49?57 doi: 10.1016/j.scienta.2013.06.027 |
[20] | MONFORT W S, CSINOS A S, DESAEGER J, et al. Evaluating Brassica species as an alternative control measure for root-knot nematode (M. incognita) in Georgia vegetable plasticulture[J]. Crop Protection, 2007, 26(9): 1359?1368 doi: 10.1016/j.cropro.2006.11.008 |
[21] | 林郸, 李郁, 孙永健, 等. 不同轮作模式下秸秆还田与氮肥运筹对杂交籼稻产量及米质的影响[J]. 中国生态农业学报(中英文), 2020, 28(10): 1581?1590 LIN D, LI Y, SUN Y J, et al. Effects of straw returning and nitrogen application on yield and quality of hybrid indica rice under different rotation patterns[J]. Chinese Journal of Eco-Agriculture, 2020, 28(10): 1581?1590 |
[22] | YANG R P, MO Y L, LIU C M, et al. The effects of cattle manure and garlic rotation on soil under continuous cropping of watermelon (Citrullus lanatus L.)[J]. PLoS One, 2016, 11(6): e0156515 doi: 10.1371/journal.pone.0156515 |
[23] | 王幸, 邢兴华, 徐泽俊, 等. 耕作方式和秸秆还田对黄淮海夏大豆产量和土壤理化性状的影响[J]. 中国油料作物学报, 2017, 39(6): 834?841 doi: 10.7505/j.issn.1007-9084.2017.06.015 WANG X, XING X H, XU Z J, et al. Effects of tillage and straw returning on soybean yield and soil physicochemical properties in Yellow-Huai-Hai Rivers Valley[J]. Chinese Journal of Oil Crop Sciences, 2017, 39(6): 834?841 doi: 10.7505/j.issn.1007-9084.2017.06.015 |
[24] | 王秋菊, 姜宇, 周鑫, 等. 豆麦轮作区麦秸长期还田对作物产量及土壤化学性质的影响[J]. 农业工程学报, 2019, 35(24): 113?120 doi: 10.11975/j.issn.1002-6819.2019.24.014 WANG Q J, JIANG Y, ZHOU X, et al. Effects of long-term wheat straw returned to field on crop yield and soil chemical properties in soybean-wheat rotation areas[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(24): 113?120 doi: 10.11975/j.issn.1002-6819.2019.24.014 |
[25] | 陈昱, 张福建, 范淑英, 等. 秸秆腐解物对豇豆连作土壤性质及幼苗生理指标的影响[J]. 核农学报, 2019, 33(7): 1472?1479 doi: 10.11869/j.issn.100-8551.2019.07.1472 CHEN Y, ZHANG F J, FAN S Y, et al. Effects of crop straw decomposition on the soil properties of the continuous cropping cowpea and the seedling physiological indexes[J]. Journal of Nuclear Agricultural Sciences, 2019, 33(7): 1472?1479 doi: 10.11869/j.issn.100-8551.2019.07.1472 |
[26] | 崔喜安, 姜宇, 米刚, 等. 长期麦秸还田对暗棕壤土壤肥力和大豆产量的影响[J]. 大豆科学, 2011, 30(6): 976?978 CUI X A, JIANG Y, MI G, et al. Effect of long-term application of wheat straw on fertility of dark brown soil and yield of soybean[J]. Soybean Science, 2011, 30(6): 976?978 |
[27] | 史洪洲, 汪扬媚, 胡庭兴, 等. 核桃凋落叶分解对小麦生长的影响及施氮的缓解效应[J]. 应用与环境生物学报, 2017, 23(5): 818?825 SHI H Z, WANG Y M, HU T X, et al. Effects of decomposing walnut leaf litter on growth of wheat and counteracting effect of N fertilization[J]. Chinese Journal of Applied and Environmental Biology, 2017, 23(5): 818?825 |