删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

陇东旱塬苹果细根对覆膜的可塑性响应

本站小编 Free考研考试/2022-01-01

孙文泰,
马明,
董铁,
牛军强,
尹晓宁,
刘兴禄
甘肃省农业科学院林果花卉研究所 兰州 730070
基金项目:国家自然科学基金项目(31760555)、国家现代农业产业技术体系项目(GARS-27)、甘肃省科技计划项目(21YF1NA366)和农业农村部西北地区果树科学观测实验站(S-10-18)资助

详细信息
作者简介:孙文泰, 主要从事果树栽培研究工作。E-mail: swt830312@126.com
中图分类号:F323.22

计量

文章访问数:35
HTML全文浏览量:28
PDF下载量:14
被引次数:0
出版历程

收稿日期:2021-02-02
录用日期:2021-05-10
网络出版日期:2021-07-26
刊出日期:2021-09-06

Response of fine roots of apple to plastic film mulching in the dry tableland of eastern Gansu

SUN Wentai,
MA Ming,
DONG Tie,
NIU Junqiang,
YIN Xiaoning,
LIU Xinglu
Institute of Forestry, Fruits and Floriculture, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China
Funds:This study was supported by the National Natural Science Foundation of China (31760555), the National Modern Agricultural Industrial Technology System of China (GARS-27), the Science and Technology Plan Project of Gansu Province (21YF1NA366) and the Scientific Oberserving and Experimental Station of Fruit Tree Science (Northwest Region), Ministry of Agriculture and Rural Affairs (S-10-18)



摘要
HTML全文
(2)(7)
参考文献(29)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为探明陇东旱塬苹果树根系年周期生长动态规律, 以及覆膜保墒措施下垂直土层根系数量、形态、分支特性、土壤理化性状的时空差异, 以18 a生苹果树(‘长富2号’/山定子)为试材, 于苹果根系3次发根高峰: 春季萌芽至新梢旺长前(Ⅰ)、新梢停长期(Ⅱ)和采果后至落叶期(Ⅲ), 采用土壤剖面法调查清耕(CK)、覆膜2 a (2Y)、覆膜4 a (4Y)和覆膜6 a (6Y)的根系空间分布, 并对根系生物量、根长、表面积、比根长、比分支数等进行测定, 探索不同覆膜年限处理下细根生长时空动态特征。借助回归统计分析, 阐明苹果树细根生长策略对覆膜年限的响应。结果表明: 在苹果根系生长年周期中, 第Ⅲ次发根高峰最为重要。各处理苹果细根在第Ⅲ次发根高峰的生物量占3次发根高峰期总生物量的73.55%~84.85%, 在第Ⅰ发根高峰表层土壤(0~20 cm)的细根分支数分别为第Ⅲ次发根高峰的130.67%、100.53%、156.63%和238.63%, 可提高原位土壤资源利用效率; 在第Ⅲ次发根高峰中, CK促进细根根长与根表面积在表层土壤中的分布, 分别为第Ⅰ次发根高峰的275.64%和248.96%; 并抑制细根分支, 分支数和比分支数仅为第Ⅰ次发根高峰的76.53%和14.68%, 以达到扩展有效营养空间、降低根系内部竞争的作用。短期覆膜(2Y)各土层的土壤含水量分别为CK的112.39%、118.04%、124.06%、133.59%和114.49%, 细根生物量在3次发根高峰中分别为CK的116.72%、232.35%和112.09%; 土壤表层细根比根长在第Ⅰ和Ⅲ次发根高峰相比CK分别提高47.1%和62.92%, 根表面积则分别提高67.21%和56.88%; 深层土壤(80~100 cm)细根分支数相比CK分别提高282.22%和7.27%。可见2Y处理可促进表层土壤细根形态性状的表达及深层土壤根系分支结构的建成, 细根均匀分布于垂直土层0~100 cm的距干0~120 cm范围内。6Y处理在年生长初期表层土壤的细根分支数和比分支数相比CK分别提高6.11%和34.6%, 而在年生长后期则仅为CK的58.1%和19.56%, 呈年生长初期重分支、年生长后期简化分支的构型特点, 并显著抑制第Ⅲ次发根高峰细根生长, 深层土壤的细根根长、根表面积和比根长仅为CK的35.19%、40.43%和82.67%。即苹果细根生长受物候期和树体营养周转的影响, 在年生长初期应用“资源保守获取型”生长策略, 在年生长后期采取“资源快速获取型”生长策略; 短期覆膜(2Y)可改善土壤理化性状, 促进细根拓展延伸范围; 长期覆膜(6Y)对亚表层土壤(20~40 cm)的破坏作用, 阻碍细根下扎, 集中土壤表层分布。
关键词:苹果/
覆膜/
细根特征/
适应策略
Abstract:This study investigated the annual growth dynamics of apple tree roots in the dry plateau of Longdong and the temporal and spatial differences in the number, morphology, branching characteristics of the roots, and soil physical and chemical properties in vertical soil layers under film mulching and soil moisture conservation measures. Eighteenth-year-old apple trees (‘ Nagano Fuji No.2’) were assessed three times in the rooting peak times of apple tree: from spring sprouting to vigorous growth of new shoots (Ⅰ), shoots stopped growing (Ⅱ), and from fruit harvest to defoliation (Ⅲ). Using the soil profile and stratified sampling method, different treatments (conventional tillage [CK], film-mulching for two years [2Y], film-mulching for four years [4Y], and film-mulching for six years [6Y]) were investigated to analyze the spatial distribution of biomass, root length, surface area, specific root length, and the specific branch (branch number/dry matter weigh) of roots. Regression analysis was used to assess the fine root growth strategy for apple trees with plastic film mulching. The results showed that the rooting peak Ⅲ was the most important stage of the annual growth cycle of apple roots. The fine roots biomass at rooting peak Ⅲ under each treatment was 73.55%–84.85% of the total biomass at the three rooting peaks. The number of fine root branches at rooting peak Ⅰ in the surface soil (0–20 cm) was 130.67%, 100.53%, 156.63%, and 238.63% of that at rooting peak Ⅲ, which effectively improved the utilization of the soil resources in situ. At rooting peak Ⅲ, CK promoted the distribution of fine root length and root surface area in the surface soil, which were 275.64% and 248.96% of those at rooting peak Ⅰ, respectively. The number of branches and specific branches were only 76.53% and 14.68% of those at rooting peak Ⅰ, which expanded the effective nutrient space and reduced the internal competition of the root system. The soil water content in the short-term mulching (2Y) treatment in each soil layer were 112.39% (0?20 cm), 118.04% (20?40 cm), 124.06% (40?60 cm), 133.59% (60?80 cm), and 114.49% (80?100 cm) of CK; and the fine root biomass was 116.72%, 232.35%, and 112.09% of CK at the three rooting peak times. Compared with CK, the specific root length of the surface fine roots increased by 47.1% and 62.92% at rooting peaks Ⅰ and Ⅲ, and the root surface area increased by 67.21% and 56.88% in 2Y treatment. The number of fine root branches in the deep soil (80–100 cm) increased by 282.22% and 7.27%, respectively, compared with CK. The 2Y treatment promoted fine root morphological trait expression at the surface soil and branch structure establishment in the deep soil. Fine roots were evenly distributed in the 0–100 cm vertical soil layer and 0–120 cm horizontally from tree. Compared with CK, the 6Y treatment increased the number of fine root branches and specific branches by 6.11% and 34.6%, respectively, in the early growth stage, but by 58.1% and 19.56% in the late growth stage. These results demonstrate the characteristics of complex branches in the early growth stage and simplified branches in the late growth stage significantly inhibit the growth of fine roots at rooting peak Ⅲ. The fine root length, root surface area, and specific root length in the deep soil were 35.19%, 40.43%, and 82.67% of those of CK, respectively, in 6Y treatment. Fine root growth was affected by the phenological period and the turnover of tree nutrients; the “conservatively obtaining resources” growth strategy was applied in the early growth stage, and the “rapidly obtaining resources” growth strategy was adopted in the late growth stage. Short-term film mulching (2Y) can improve the physical and chemical properties of the soil and promote fine root extension. Damage from long-term plastic film mulching (6Y) to the subsurface soil (20–40 cm) prevented the fine roots from settling down and they became concentrated in the surface layer.
Key words:Apple/
Film-mulching/
Characteristics of fine root/
Adaptation strategy

HTML全文


图1苹果根系调查示意图(A、B、C、D、E为调查根系的5个剖面)
Figure1.Survey map of apple roots (A, B, C, D, E are five sections of root investigation)


下载: 全尺寸图片幻灯片


图2不同覆膜年限苹果树根系发根高峰[春季萌芽至新梢旺长期(Ⅰ)、采果后至落叶期(Ⅲ)]的细根根长空间分布
CK: 对照; 2Y: 覆膜2年处理; 4Y: 覆膜4年处理; 6Y: 覆膜6年处理。CK: control treatment; 2Y: mulching for 2 years; 4Y: mulching for 4 years; 6Y: mulching for 6 years.
Figure2.Spatial distribution of fine root length in rooting peak times from spring sprouting to vigorous growth of new shoots (Ⅰ) and from fruit harvest to defoliation (Ⅲ) of apple trees with different years of film mulching


下载: 全尺寸图片幻灯片

表1试验区土壤理化性状
Table1.Physical and chemical properties of soil in the test area
项目 Item0~20 cm20~40 cm
全氮 Total N (g?kg?1)1.270.74
全磷 Total P (g?kg?1)1.120.80
全钾 Total K (g?kg?1)16.8616.82
有机质 Organic matter (g?kg?1)14.699.57
碱解氮 Alkaline hydrolysis N (mg?kg?1)96.2547.25
速效磷 Available P (mg?kg?1)47.314.7
速效钾 Available K (mg?kg?1)377.04182.96
pH8.358.85
黏粒含量 Clay content (%)9.709.59


下载: 导出CSV
表2不同覆膜年限苹果树根系3次发根高峰细根生物量动态
Table2.Dynamics of fine root biomass at three rooting peak times with different years of film mulching g 
发根高峰期
Rooting peak time
覆膜年限 Mulching years (a)
0 (对照 CK)246
76.96±6.93b89.83±5.62b98.81±5.89a57.68±4.23c
74.50±7.79c173.10±9.63a102.23±10.50b86.25±7.53bc
848.11±52.15b950.61±37.40a558.91±44.79c494.16±42.27c
  Ⅰ: 春季萌芽至新梢旺长期; Ⅱ: 新梢停长期; Ⅲ: 采果后至落叶期。同行不同小写字母表示不同覆膜年限间在P<0.05水平差异显著。Ⅰ: spring sprouting to vigorous growth period of new shoots;Ⅱ: new shoots stop growing; Ⅲ: fruit harvest to defoliation. Different lowercase letters in the same row indicate significant differences among different treatments of mulching years at P<0.05.


下载: 导出CSV
表3不同覆膜年限苹果树细根在3次发根高峰的垂直分布中心
Table3.Vertical distribution centers in three rooting peak times of apple fine roots with different years of film mulching cm 
覆膜年限
Mulching year (a)
发根高峰 Rooting peak time
0 (对照 CK)57.21±0.66a58.09±0.62a46.75±1.04b
254.35±0.94b52.15±0.60b63.56±1.31a
441.23±0.27c42.89±0.87c42.45±0.68c
639.10±1.52d48.77±0.77b39.64±0.96d
  Ⅰ: 春季萌芽至新梢旺长期; Ⅱ: 新梢停长期; Ⅲ: 采果后至落叶期。同列不同小写字母表示不同覆膜年限间在P<0.05水平差异显著。Ⅰ: spring sprouting to vigorous growth of new shoots;Ⅱ: new shoots stop growing; Ⅲ: fruit harvest to defoliation. Different lowercase letters in the same column indicate significant differences among different treatments of mulching years at P<0.05.


下载: 导出CSV
表4不同覆膜年限苹果细根的时空生长分布
Table4.Spatiotemporal growth and distribution of fine roots of apple with different mulching years
项目
Item
覆膜年限
Mulching years (a)
春季萌芽至新梢旺长期
Spring sprouting to vigorous growth of new shoots (Ⅰ)
采果后至落叶期
Fruit harvest to defoliation (Ⅲ)
0~20 cm80~100 cm0~20 cm80~100 cm
根长
Root length (cm)
0 (对照 CK)13 311.09±452.7d13 839.71±432.10b36 690.20±1882.87a8190.15±602.95c
234 086.36±406.47c18 593.83±1206.09a19 257.98±1246.87c22 417.03±1296.37a
471 155.00±6346.50a12 601.09±394.29b26 282.31±6453.39b9588.59±278.57b
647 031.10±2961.83b6800.14±126.27c9046.08±386.76d2882.28±180.22d
根表面积
Root surface area (cm2)
0 (对照 CK)1723.00±56.76c2721.29±63.40b4289.63±59.89a1475.80±67.59b
25015.37±216.77b3227.53±184.55a2168.46±92.76c3754.46±59.07a
410 921.66±720.21a2512.73±50.24c3263.16±151.54b1536.92±128.66b
65242.66±159.77b1655.36±58.14d1769.34±61.67d596.65±20.64c
平均根径
Average root diameter (mm)
0 (对照 CK)0.60±0.11b0.82±0.08b0.51±0.05b1.12±0.03b
20.54±0.04c0.81±0.04b0.46±0.05b0.91±0.05c
40.75±0.07a0.91±0.02b0.51±0.06b0.84±0.05c
60.84±0.03a1.18±0.07a1.03±0.04a1.32±0.04a
比根长
Specific root length (cm?g?1)
0 (对照 CK)1437.48±78.30c1346.27±132.94ab275.28±22.54b65.42±7.93b
22114.53±136.16a1497.54±76.23a448.48±40.57a90.82±10.02a
41302.72±30.84c1406.37±75.17a287.20±70.29b95.84±11.03a
61822.91±62.69b1179.53±130.90b83.58±16.79c54.08±6.09b
比表面积
Specific surface (cm2?g?1)
0 (对照 CK)186.07±10.86b264.72±11.85b32.19±2.83b11.79±0.81b
2311.13±20.54a295.23±13.30a50.50±1.66a15.21±0.84a
4199.96±9.07b280.44±18.15ab35.66±1.74b15.36±0.67a
6203.20±15.03b230.56±18.55c16.35±0.86c11.20±0.89b
根尖数
Root tip Number (No.?cm?1)
0 (对照 CK)2.50±0.16b1.17±0.06c4.70±0.12d3.58±0.15d
22.70±0.19b1.77±0.04a5.37±0.06b4.06±0.12c
42.63±0.06b1.42±0.04b4.98±0.05c4.63±0.13b
63.32±0.28a1.14±0.05c6.00±0.10a5.93±0.10a
比根尖数
Specific Root tip (No.?g-1)
0 (对照 CK)3596.10±189.88c1578.31±51.98c1293.83±61.69b234.31±7.57c
25706.82±254.55b2302.43±80.62a2408.08±71.63a568.91±22.12a
43422.74±122.68c1999.00±95.22b1430.89±116.52b444.12±13.69b
66053.91±138.33a1480.45±28.38c334.12±28.05c121.00±10.87d
分支数
Branch number (No.?cm?1)
0 (对照 CK)5.24±0.18b0.90±0.05c4.01±0.10a1.10±0.08b
23.79±0.13c3.44±0.16a3.77±0.29a1.18±0.04b
43.90±0.12c1.18±0.14b2.49±0.14b1.09±0.10b
65.56±0.13a0.95±0.07c2.33±0.11b1.37±0.08a
比分支数
Specific branch (No.?g?1)
0 (对照 CK)7778.18±196.09c1296.01±63.75d1141.46±58.96b78.09±6.89c
28534.12±94.55b4791.41±86.33a1741.71±124.82a116.70±5.57a
45414.70±156.20d1798.88±57.11c744.13±12.42c112.09±10.08a
610 469.38±672.99a2368.90±65.96b223.24±19.94d93.43±4.05b
  同列不同小写字母表示在P<0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different treatments of mulching years at P<0.05.


下载: 导出CSV
表5不同覆膜年限苹果园土壤有机质含量及物理性质的垂直变化
Table5.Vertical changes of organic matter content and physical properties of apple soils with different years of film mulching
覆膜年限
Mulching years
(a)
土层深度
Soil depth
(cm)
有机质含量
Organic matter content
(g?kg?1)
含水量
Moisture
(g?cm?3)
孔隙度
Porosity
(%)
容重
Bulk density
(g?cm?3)
通气度
Aeration
(%)
毛管孔隙度
Capillary porosity
(%)
0 (对照 CK)0~2012.94±0.17aA21.07±1.30bBC54.48±1.17aAB1.30±0.07abA35.34±1.60aA42.65±0.44aB
20~408.41±0.25bA23.89±2.00aB47.71±1.33bAB1.27±0.06bA27.83±1.07bA36.09±1.45cA
40~607.86±0.12cA21.78±1.29abB45.11±0.87cBC1.36±0.03abA25.02±1.72cA34.66±1.20cB
60~806.94±0.17dA20.51±0.81bC45.34±0.76cA1.37±0.05abA26.43±1.73bcA39.54±1.50bA
80~1006.49±0.16eB20.50±1.80bBC43.78±1.18cA1.40±0.09aA25.15±1.86cA36.77±1.55cB
20~2012.48±0.12aAB23.68±1.39bAB57.56±1.36aA1.18±0.07cB34.20±1.45aA44.48±0.74aA
20~408.00±0.11bB28.20±1.50aA49.87±1.37bA1.24±0.02bcA21.67±1.07bB34.24±1.06dC
40~607.45±0.11cAB27.02±1.88aA46.49±0.89bcAB1.31±0.06abA22.15±1.36bB38.79±1.02cA
60~807.20±0.13dA27.40±1.20aA44.63±2.75cdA1.32±0.05abA21.80±0.50bB38.84±1.08cA
80~1007.33±0.10cdA23.47±0.87bAB41.06±4.48dA1.36±0.05aA19.35±0.97cB40.87±1.09bA
40~2011.7±0.52aC24.23±1.93aA51.01±3.54aBC1.18±0.04cB26.78±1.80aB42.14±0.79aB
20~406.56±0.20cC25.24±1.46aAB47.26±3.52abAB1.26±0.05bA22.02±0.22cB34.96±1.66bAB
40~607.12±0.22bB23.21±2.81aB47.77±1.27abA1.33±0.05abA24.56±1.09bA35.40±0.43bB
60~806.30±0.14cB24.31±1.01aB42.96±1.15bcA1.35±0.04aA18.65±1.03dC34.67±1.14bcB
80~1007.37±0.28bA25.23±2.13aA42.08±3.55cA1.39±0.03aA16.85±1.87dC33.06±0.73cC
60~2012.03±0.31aBC19.13±1.30aC49.87±0.37aC1.24±0.05bB28.80±1.06aB41.46±0.95aB
20~406.38±0.09bC19.88±2.28aC44.80±2.00bB1.28±0.05bA19.47±1.07bcB32.83±0.37cBC
40~606.50±0.37bC20.09±0.20aB43.93±1.16bC1.37±0.02aA20.91±1.75bC36.61±2.00bAB
60~806.27±0.16bcB18.90±0.20aC42.31±1.78bcA1.39±0.05aA17.22±0.63dC31.44±0.69cC
80~1005.82±0.20cC18.62±1.75aC39.85±2.66cA1.42±0.02aA17.59±0.91cdBC32.13±1.04cC
  同列不同小写字母表示不同土层间在P<0.05水平差异显著。同列不同大写字母表示不同覆膜年限间在P<0.05水平差异显著。Different lowercase letters in the same column indicate significant differences among different soil layers at P<0.05. Different capital letters in the same column indicate significant differences among different mulching years at P<0.05.


下载: 导出CSV
表6不同覆膜年限苹果细根生长与土壤理化性状的相关性
Table6.Correlation between apple fine root growth and soil physical and chemical properties under different years of film-mulching
土壤性状
Soil property
土层深度
Soil depth (cm)
数量性状
Quantitative traits
形态性状 Morphological characters构型性状 Configuration properties
根长
Root length
根表面积
Root surface area
平均根径
Average root diameter
比根长
Specific root length
比表面积
Specific surface area
根尖数
Root tip number
比根尖数
Specific root tip
分支数
Branch number
比分支数
Specific branch
有机质含量
Organic matter content
0~20 0.728** 0.603** ?0.673** 0.743** 0.784** 0.641** 0.765** 0.602** 0.712**
20~40 0.663** 0.676** ?0.771** 0.809** 0.542 0.589* 0.910** 0.651** 0.738**
40~60 0.887** 0.817** ?0.892** 0.910** 0.935** 0.649** 0.944** 0.568* 0.858**
60~80 0.450 0.377 ?0.740** 0.304 0.168 ?0.656** 0.443 ?0.221 ?0.121
80~100 ?0.400 ?0.377 0.238 ?0.329 ?0.414 ?0.480 ?0.457 ?0.375 ?0.775**
含水量
Moisture
0~20 0.199 0.412 ?0.676** 0.659** 0.719** ?0.417 0.684** 0.117 0.521
20~40 0.579* 0.675** ?0.781** 0.461 0.872** ?0.646** 0.564 0.341 0.597*
40~60 0.555* 0.656** ?0.524 0.458 0.364 ?0.006 0.488 0.107 0.364
60~80 0.890** 0.818** ?0.886** 0.905** 0.919** ?0.760** 0.991** 0.242 0.849**
80~100 0.676** 0.653** ?0.888** 0.907** 0.756** ?0.369 0.767** ?0.431 0.550
孔隙度
Porosity
0~20 0.375 ?0.082 ?0.584* 0.710** 0.730** ?0.309 0.789** 0.762** 0.854**
20~40 0.556 0.629** ?0.595* 0.586* 0.727** ?0.510 0.406 0.450 0.566*
40~60 0.442 0.266 ?0.529* 0.438 0.238 ?0.314 0.339 0.360 0.071
60~80 0.372 0.420 ?0.329 0.130 0.130 ?0.137 0.353 0.155 0.188
80~100 ?0.030 0.152 ?0.078 ?0.091 0.120 ?0.366 0.042 ?0.543* ?0.148
容重
Bulk density
0~20 0.269 ?0.122 0.326 ?0.309 ?0.340 ?0.192 ?0.347 0.236 ?0.120
20~40 ?0.142 ?0.199 0.257 ?0.231 ?0.335 0.248 ?0.094 ?0.117 ?0.153
40~60 ?0.395 ?0.380 0.312 ?0.271 ?0.103 0.136 ?0.262 0.093 ?0.094
60~80 ?0.571* ?0.519 0.519 ?0.530* ?0.550* 0.461 ?0.573 ?0.139 ?0.507
80~100 ?0.403 ?0.441 0.288 ?0.204 ?0.474 0.263 ?0.423 0.355 ?0.426
通气度
Aeration
0~20 0.339 0.405 ?0.417 0.476 0.417 0.636** 0.644** 0.895** 0.680**
20~40 0.659** 0.694** ?0.456 0.761** 0.779** 0.653** 0.634** 0.589* 0.678**
40~60 0.635** 0.644** ?0.795** 0.719** 0.787** 0.642** 0.772** 0.633** 0.590**
60~80 0.333 0.636** ?0.614** 0.168 0.091 0.058 0.263 0.121 0.091
80~100 0.061 0.182 0.229 ?0.277 ?0.347 ?0.690** 0.030 ?0.360 ?0.647**
毛管孔隙度
Capillary porosity
0~20 0.229 0.147 ?0.633** 0.827** 0.804** 0.240 0.820** 0.658** 0.859**
20~40 0.303 0.303 ?0.330 0.461 0.020 0.610** 0.585* 0.083 0.343
40~60 0.152 0.251 0.091 ?0.172 ?0.309 ?0.257 ?0.067 ?0.013 ?0.300
60~80 0.649** 0.667** ?0.628** 0.410 ?0.317 ?0.357 0.623** 0.190 0.416
80~100 0.871** 0.893** ?0.398 0.295 0.333 ?0.693** 0.633** ?0.288 0.226
  *和**分别表示在P<0.05和P<0.01水平相关。* and ** represent correlation coefficients at P<0.05 and P<0.01, respectively.


下载: 导出CSV
表7不同土层深度(x)介导下不同发根高峰苹果细根根长与分支(y)生长策略函数
Table7.Growth strategy functions of fine root length and branch (y) of apple in different rooting peak times mediated by different soil layer depth (x)
覆膜年限
Mulching years (a)
发根高峰期
Rooting peak time
根长分布函数
Root length distribution function
相关系数
Correlation coefficient
分支数分布函数
Root branch distribution function
相关系数
Correlation coefficient
0 (对照 CK)y=?9.2103x2+1034x+542.640.624**y=?36.158x2+2887.8x+62 2830.535
y=?1.9882x2+187.93x+13 2220.945**y=?0.4066x2?139.17x+79 8970.206
y=?0.3645x2?368.63x+47 6180.940**y=15.679x2?3806.3x+228 5540.976**
2y=?0.9901x2?76.868x+37 0470.778**y=5.8543x2?1359.2x+148 8020.398
y=4.3715x2?763.07x+52 1720.983**y=46.881x2?8206.5x+477 1610.968**
y=?5.4424x2+694.39x+9641.40.545y=?7.3148x2+177.61x+81 9000.730**
4y=?0.9901x2?76.868x+37 0470.778**y=92.115x2?13 986x+512 8440.902**
y=4.3715x2?763.07x+52 1720.983**y=78.314x2?12 894x+546 7020.991**
y=?5.4424x2+694.39x+9641.40.545y=15.467x2?2452.4x+105 4180.877**
6y=10.963x2?1785x+77 8460.968**y=72.999x2?11 673x+456 2500.939**
y=0.8896x2?241.89x+21 8500.778**y=14.329x2?2702.7x+163 0020.882**
y=1.4063x2?245.74x+14 2700.911**y=4.6636x2?774.71x+36 4410.925**
  Ⅰ: 春季萌芽至新梢旺长期; Ⅱ: 新梢停长期; Ⅲ: 采果后至落叶期。Ⅰ: spring sprouting to vigorous growth of new shoots;Ⅱ: new shoots stop growing; Ⅲ: fruit harvest to defoliation


下载: 导出CSV

参考文献(29)
[1]李佳旸, 王延平, 韩明玉, 等. 陕北黄土丘陵区山地苹果园的土壤水分动态研究[J]. 中国生态农业学报, 2017, 25(5): 749?758
LI J Y, WANG Y P, HAN M Y, et al. Soil moisture dynamics of apple orchards in Loess Hilly Area of northern Shaanxi Province[J]. Chinese Journal of Eco-Agriculture, 2017, 25(5): 749?758
[2]胥生荣, 张恩和, 马瑞丽, 等. 不同覆盖措施对枸杞根系生长和土壤环境的影响[J]. 中国生态农业学报, 2018, 26(12): 1802?1810
XU S R, ZHANG E H, MA R L, et al. Effects of mulching patterns on root growth and soil environment of Lycium barbarum[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1802?1810
[3]靳乐乐, 乔匀周, 董宝娣, 等. 起垄覆膜栽培技术的增产增效作用与发展[J]. 中国生态农业学报(中英文), 2019, 27(9): 1364?1374
JIN L L, QIAO Y Z, DONG B D, et al. Crop yield increasing and efficiency improving effects and development of technology of ridge-furrow cultivation with plastic film mulching[J]. Chinese Journal of Eco-Agriculture, 2019, 27(9): 1364?1374
[4]CHEN X L, WU P T, ZHAO X N, et al. Effect of different mulches on harvested rainfall use efficiency for corn (Zea mays L.) in semi-arid regions of northwest China[J]. Arid Land Research and Management, 2013, 27(3): 272?285 doi: 10.1080/15324982.2013.771231
[5]张林森, 刘富庭, 张永旺, 等. 不同覆盖方式对黄土高原地区苹果园土壤有机碳组分及微生物的影响[J]. 中国农业科学, 2013, 46(15): 3180?3190 doi: 10.3864/j.issn.0578-1752.2013.15.012
ZHANG L S, LIU F T, ZHANG Y W, et al. Effects of different mulching on soil organic carbon fractions and soil microbial community of apple orchard in loess plateau[J]. Scientia Agricultura Sinica, 2013, 46(15): 3180?3190 doi: 10.3864/j.issn.0578-1752.2013.15.012
[6]孙文泰, 马明, 董铁, 等. 陇东旱塬苹果根系分布规律及生理特性对地表覆盖的响应[J]. 应用生态学报, 2016, 27(10): 3153?3163
SUN W T, MA M, DONG T, et al. Response of distribution pattern and physiological characteristics of apple roots grown in the dry area of eastern Gansu to ground mulching[J]. Chinese Journal of Applied Ecology, 2016, 27(10): 3153?3163
[7]高琛稀, 刘航空, 韩明玉, 等. 矮化自根砧苹果苗木生长动态及其根系分布特征[J]. 西北农林科技大学学报: 自然科学版, 2016, 44(5): 170?176
GAO C X, LIU H K, HAN M Y, et al. Growth dynamic and characteristics of root distribution of dwarfing self-rooted rootstock apple nursery[J]. Journal of Northwest A & F University: Natural Science Edition, 2016, 44(5): 170?176
[8]张亚雄. 蓄水坑灌下苹果树细根动态及其影响因素的研究[D]. 太原: 太原理工大学, 2017: 53–55
ZHANG Y X. Study on the fine root dynamics of apple trees and relationship with impact factors under water storage pit irrigation[D]. Taiyuan: Taiyuan University of Technology, 2017: 53–55
[9]FRESCHET G T, ROUMET C. Sampling roots to capture plant and soil functions[J]. Functional Ecology, 2017, 31(8): 1506?1518 doi: 10.1111/1365-2435.12883
[10]杨雨, 李芳兰, 包维楷, 等. 川西亚高山11种常见灌木细根形态特征[J]. 应用与环境生物学报, 2020, 26(6): 1376?1384
YANG Y, LI F L, BAO W K, et al. Fine-root morphology of common shrubs in the subalpine forests of western Sichuan[J]. Chinese Journal of Applied and Environmental Biology, 2020, 26(6): 1376?1384
[11]白雪, 赵成章, 康满萍. 金塔绿洲不同林龄多枝柽柳根系分叉数与分支角度的关系[J]. 生态学报, 2021, 41(5): 1878?1884
BAI X, ZHAO C Z, KANG M P. Relationship between root Forks and branch angle of Tamarix ramosissima at different stand ages in oasis of Jinta County[J]. Acta Ecologica Sinica, 2021, 41(5): 1878?1884
[12]徐立清, 崔东海, 王庆成, 等. 张广才岭西坡次生林不同生境胡桃楸幼树根系构型及细根特征[J]. 应用生态学报, 2020, 31(2): 373?380
XU L Q, CUI D H, WANG Q C, et al. Root architecture and fine root characteristics of Juglans mandshurica saplings in different habitats in the secondary forest on the west slope of Zhangguangcailing, China[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 373?380
[13]潘小莲, 李秀, 赵英, 等. 黄土高原旱塬区不同覆盖模式下冬小麦耗水特征及根系生长规律研究[J]. 麦类作物学报, 2018, 38(6): 726?733 doi: 10.7606/j.issn.1009-1041.2018.06.13
PAN X L, LI X, ZHAO Y, et al. Characteristics of water consumption and root growth of winter wheat under different covering modes in arid tableland of the Loess Plateau[J]. Journal of Triticeae Crops, 2018, 38(6): 726?733 doi: 10.7606/j.issn.1009-1041.2018.06.13
[14]李雪萍, 赵成章, 任悦, 等. 尕海湿地不同密度下甘肃马先蒿根系分叉数与连接数、分支角度的关系[J]. 生态学报, 2019, 39(10): 3670?3676
LI X P, ZHAO C Z, REN Y, et al. Relationship between root forks and link number, branch angle of Pedicularis kansuensis under different density conditions in Gahai Wetland[J]. Acta Ecologica Sinica, 2019, 39(10): 3670?3676
[15]刘照霞, 邢玥, 吴晓娴, 等. 矮化中间砧苹果施氮位置对细根分布、氮素吸收和产量品质的影响[J]. 园艺学报, 2021, 48(2): 219?232
LIU Z X, XING Y, WU X X, et al. Effects of nitrogen application position on fine root distribution, nitrogen absorption, yield and quality of dwarfing interstock apple trees[J]. Acta Horticulturae Sinica, 2021, 48(2): 219?232
[16]王芬, 刘会, 冯敬涛, 等. 牛粪和生物炭对苹果根系生长、土壤特性和氮素利用的影响[J]. 中国生态农业学报, 2018, 26(12): 1795?1801
WANG F, LIU H, FENG J T, et al. Effects of cow dung and biochar on root growth, soil properties and nitrogen utilization of apple[J]. Chinese Journal of Eco-Agriculture, 2018, 26(12): 1795?1801
[17]李婷婷, 唐永彬, 周润惠, 等. 云顶山不同人工林林下植物多样性及其与土壤理化性质的关系[J]. 生态学报, 2021, 41(3): 1168?1177
LI T T, TANG Y B, ZHOU R H, et al. Understory plant diversity and its relationship with soil physicochemical properties in different plantations in Yunding Mountain[J]. Acta Ecologica Sinica, 2021, 41(3): 1168?1177
[18]刘涛, 王百田, 曹琪琪, 等. 不同覆盖措施对盐碱地紫穗槐细根适应策略的影响[J]. 草业科学, 2020, 37(6): 1098?1106 doi: 10.11829/j.issn.1001-0629.2019-0558
LIU T, WANG B T, CAO Q Q, et al. Effects of different mulching measures on the fine-root adaptation strategies of Amorpha fruticosa in saline soil[J]. Pratacultural Science, 2020, 37(6): 1098?1106 doi: 10.11829/j.issn.1001-0629.2019-0558
[19]单立山, 苏铭, 张正中, 等. 不同生境下荒漠植物红砂-珍珠猪毛菜混生根系的垂直分布规律[J]. 植物生态学报, 2018, 42(4): 475?486 doi: 10.17521/cjpe.2017.0300
SHAN L S, SU M, ZHANG Z Z, et al. Vertical distribution pattern of mixed root systems of desert plants Reaumuria soongarica and Salsola passerina under different environmental gradients[J]. Chinese Journal of Plant Ecology, 2018, 42(4): 475?486 doi: 10.17521/cjpe.2017.0300
[20]郭京衡, 曾凡江, 李尝君, 等. 塔克拉玛干沙漠南缘三种防护林植物根系构型及其生态适应策略[J]. 植物生态学报, 2014, 38(1): 36?44 doi: 10.3724/SP.J.1258.2014.00004
GUO J H, ZENG F J, LI C J, et al. Root architecture and ecological adaptation strategies in three shelterbelt plant species in the southern Taklimakan Desert[J]. Chinese Journal of Plant Ecology, 2014, 38(1): 36?44 doi: 10.3724/SP.J.1258.2014.00004
[21]张丽娜, 张育斌, 王军德. 黄土高原降水年内分布差异对旱作果园蒸散特征的影响[J]. 应用生态学报, 2020, 31(7): 2363?2372
ZHANG L N, ZHANG Y B, WANG J D. Effects of annual distribution difference of precipitation on evapotranspiration characteristics of dry orchard in Loess Plateau, China[J]. Chinese Journal of Applied Ecology, 2020, 31(7): 2363?2372
[22]李金航, 周玫, 朱济友, 等. 黄栌幼苗根系构型对土壤养分胁迫环境的适应性研究[J]. 北京林业大学学报, 2020, 42(3): 65?77 doi: 10.12171/j.1000-1522.20190218
LI J H, ZHOU M, ZHU J Y, et al. Adaptability response of root architecture of Cotinus coggygria seedlings to soil nutrient stress[J]. Journal of Beijing Forestry University, 2020, 42(3): 65?77 doi: 10.12171/j.1000-1522.20190218
[23]卜玉山, 邵海林, 王建程, 等. 秸秆与地膜覆盖春玉米和春小麦耕层土壤碳氮动态[J]. 中国生态农业学报, 2010, 18(2): 322?326 doi: 10.3724/SP.J.1011.2010.00322
BU Y S, SHAO H L, WANG J C, et al. Dynamics of soil carbon and nitrogen in plowed layer of spring corn and spring wheat fields mulched with straw and plastic film[J]. Chinese Journal of Eco-Agriculture, 2010, 18(2): 322?326 doi: 10.3724/SP.J.1011.2010.00322
[24]魏彬萌, 李忠徽, 王益权. 渭北旱塬苹果园土壤紧实化现状及成因[J]. 应用生态学报, 2021, 32(3): 976?982
WEI B M, LI Z H, WANG Y Q. Status and causes of soil compaction at apple orchards in the Weibei Dry Highland, Northwest China[J]. Chinese Journal of Applied Ecology, 2021, 32(3): 976?982
[25]徐佳星, 封涌涛, 叶玉莲, 等. 地膜覆盖条件下黄土高原玉米产量及水分利用效应分析[J]. 中国农业科学, 2020, 53(12): 2349?2359 doi: 10.3864/j.issn.0578-1752.2020.12.004
XU J X, FENG Y T, YE Y L, et al. Effects of plastic film mulching on yield and water use of maize in the Loess Plateau[J]. Scientia Agricultura Sinica, 2020, 53(12): 2349?2359 doi: 10.3864/j.issn.0578-1752.2020.12.004
[26]路海东, 薛吉全, 郝引川, 等. 黑色地膜覆盖对旱地玉米土壤环境和植株生长的影响[J]. 生态学报, 2016, 36(7): 1997?2004
LU H D, XUE J Q, HAO Y C, et al. Effects of black film mulching on soil environment and maize growth in dry land[J]. Acta Ecologica Sinica, 2016, 36(7): 1997?2004
[27]邹松言, 李豆豆, 汪金松, 等. 毛白杨幼林细根对梯度土壤水分的响应[J]. 林业科学, 2019, 55(10): 124?137
ZOU S Y, LI D D, WANG J S, et al. Response of fine roots to soil moisture of different gradients in young Populus tomentosa plantation[J]. Scientia Silvae Sinicae, 2019, 55(10): 124?137
[28]韩宾, 李增嘉, 王芸, 等. 土壤耕作及秸秆还田对冬小麦生长状况及产量的影响[J]. 农业工程学报, 2007, 23(2): 48?53 doi: 10.3321/j.issn:1002-6819.2007.02.010
HAN B, LI Z J, WANG Y, et al. Effects of soil tillage and returning straw to soil on wheat growth status and yield[J]. Transactions of the Chinese Society of Agricultural Engineering, 2007, 23(2): 48?53 doi: 10.3321/j.issn:1002-6819.2007.02.010
[29]POTOCKA I, SZYMANOWSKA-PU?KA J. Morphological responses of plant roots to mechanical stress[J]. Annals of Botany, 2018, 122(5): 711?723

相关话题/土壤 生态 理化 科学 植物