删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differenc

本站小编 Free考研考试/2022-01-01

薛惠云,
王素芳,
张新,
张志勇,
河南科技学院/河南省现代生物育种协同创新中心/河南省棉麦分子生态和种质创新重点实验室 新乡 453003
基金项目: the Program for Innovative Research Team (in Science and Technology) in University of Henan Province21IRTSTHN023
the National Natural Science Foundation of China31571600
the National Natural Science Foundation of China31571600

详细信息
作者简介:
通讯作者:张志勇, 主要研究方向为作物栽培生理。E-mail: z_zy123@126.com
中图分类号:S562

计量

文章访问数:115
HTML全文浏览量:9
PDF下载量:224
被引次数:0
出版历程

收稿日期:2020-11-17
录用日期:2021-02-20
刊出日期:2021-05-01

The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence

XUE Huiyun,
WANG Sufang,
ZHANG Xin,
ZHANG Zhiyong,
Henan Institute of Science and Technology/Henan Collaborative Innovation Center of Modern Biological Breeding/Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China
Funds: the Program for Innovative Research Team (in Science and Technology) in University of Henan Province21IRTSTHN023
the National Natural Science Foundation of China31571600
the National Natural Science Foundation of China31571600

More Information
Corresponding author:ZHANG Zhiyong, E-mail: z_zy123@126.com


摘要
HTML全文
(3)(5)
参考文献(51)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:光系统Ⅱ(PSⅡ)的光反应与作物光合能力密切相关。为了获得更多关于叶片衰老过程中PSⅡ状态的详细信息并快速筛选出具有不同叶片光合功能持续时间的棉花基因型,本试验利用快速叶绿素荧光技术研究了生产上报道叶片衰老快慢不同的3种棉花基因型倒一叶衰老过程中的PSⅡ的光化学反应。结果显示,基于光吸收的性能指数(PIABS)将‘百棉1号’ ‘百棉5号’和‘DP99B’分为晚衰型、中间型和早衰型。3种基因型棉花品种叶片衰老过程中电子传递受抑制情况遵循同样的规则。放氧复合体(OEC)在生育后期大量降解;PSⅡ受体侧的抑制情况要大于供体侧;叶片衰老显著限制光系统Ⅱ-光系统I间的电子传递;随着叶片衰老,用于热耗散和还原初级醌受体(QA)的能量增加,而用于PSⅡ电子传递链中QA还原(QA-)之后电子传递的能量下降。但是叶片衰老过程中,电子传递受抑制程度(除荧光开始到荧光最大时间段之间的QA还原次数之外)为‘DP99B’ > ‘百棉5号’ > ‘百棉1号’。由此可知,不同棉花基因型的叶绿素荧光特征可快速、无损地反映叶片衰老的快慢及内在生理机制。
关键词:棉花/
叶片衰老/
叶绿素荧光/
光系统Ⅱ(PSⅡ)/
快速叶绿素荧光参数
Abstract:The light reactions of photosystem Ⅱ (PSⅡ) is greatly associated with the photosynthetic capacity. In order to capture more detailed information describing the status of PSⅡ during leaf senescence and rapidly screen cotton (Gossypium L.) genotypes with different duration of photosynthetic capacity, the PSⅡ photochemistry of the first leaves counted from the stem top of three cotton genotypes ('Baimian1' 'Baimian5' and 'DP99B') presented different leaf senescence progresses in production were examined by chlorophyll a fluorescence (Chl F) analysis during leaf senescence. The results showed that 'Baimian1' 'Baimian5' and 'DP99B' were late, intermediate and early aging types, respectively, based on the performance index of light absorption (PIABS). The three genotypes complied with the similar patterns in electrical transferring inhibition accompanying leaf senescence. The depletion of oxygen-evolving complex (OEC) was obvious at the late growth stage. The inhibition of the acceptor side of PSⅡ was greater than that of the donor side. The electron flow that through the light reactions of photosystem Ⅱ and photosystem Ⅰwas significantly limited accompanying leaf senescence. With the duration of leaf senescence, the energy distributed to thermal dissipation and the primary quinone electron acceptors of PSⅡ (QA) restoration increased, and correspondingly the energy used to transport an electron into the electron transport chain beyond QA- (the reduction state of QA) declined. However, three cotton genotypes showed greater and greater electron transferring inhibition, except the number of QA reduction events between time=0 and time to reach maximal fluorescence, in the order of 'DP99B' > 'Baimian5' > 'Baimian1' with the duration of leaf senescence. It can be seen that the chlorophyll fluorescence characteristics can quickly and noninvasively reflect the senescence and the internal physiological mechanism of leaf senescence among different cotton genotypes.
Key words:Cotton/
Leaf senescence/
Chlorophyll a fluorescence/
Photosystem Ⅱ/
Rapid chlorophyll a fluorescence parameter

HTML全文


Figure1.Double normalized chlorophyll ?uorescence curves of the first leaves from top of three cotton genotypes


下载: 全尺寸图片幻灯片


Figure2.Variation of the values of RC/CSO and WK in three cotton genotypes during leaf senescence


下载: 全尺寸图片幻灯片


Figure3.Variation of parameters at acceptor side of PSⅡ of three cotton genotypes during leaf senescence


下载: 全尺寸图片幻灯片

Table1.The weather conditions of Xinxiang, Henan, China in 2012 and from 1961 to 2011
TimeTemperature (℃)Rainfall (mm)Sunshine (h)
2012Average from 1961 to 20112012Average from1961 to 20112012Average from1961 to 2011
Early July26.6927.3254.7455.3062.7552.20
Middle July27.0728.4751.1511.1061.7066.40
Late July27.5329.5550.6214.3072.3278.80
Early August27.2627.0052.0844.7068.2162.00
Middle August25.8925.7041.8236.4064.1643.90
Late August24.7824.9931.650.4071.3755.80
Early September22.8023.5627.9522.3058.0650.90
Middle September21.1220.6422.3522.8058.6968.60
Late September25.5620.5916.948.7059.0858.20
Early October17.2519.9212.140.4057.4673.10


下载: 导出CSV
Table2.De?nitions of measured and calculated chlorophyll a ?uorescence parameters used in the experiment
Terms and formulaeDescription
FtFluorescence at time after onset of actinic illumination
FO~F50μsMinimum ?uorescence, when all PSⅡ reaction centers (RCs) are open.
FJFluorescence at the J-step (2 ms) of the OJIP transient
FIFluorescence at the I-step (30 ms) of the OJIP transient
FMMaximum recorded ?uorescence at the P-step when all RCs are closed.
FKFluorescence at the K-step (300 μs) of the OJIP transient
VJ=(FJ?FO)/(FM?FO)Relative variable fluorescence at the phase J of the fluorescence induction curve
VI=(FI?FO)/(FM?FO)Relative variable fluorescence at the phase I of the fluorescence induction curve
WK=(FK?FO)/(FJ?FO)Represent the damage to oxygen-evolving complex (OEC)
FV=FM?FOMaximal variable fluorescence
ΦPO=TRO/ABS=FV/FM=[1–(FO/FM)]Maximum quantum yield of primary photochemistry, TRO is the trapped energy ?u, ABS is the absorption energy ?u
ΦEO=ETO/ABS=ΦPO×ΨoQuantum yield (at time = 0) for electron transport from ${\rm{Q}}_{\rm{A}}^ - $ to plastoquinone, ETO is the energy ?u used to electron transport
Ψo=ETO/TRO=1?VJProbability (at time = 0) that a trapped exciton moves an electron into the electron transport chain beyond ${\rm{Q}}_{\rm{A}}^ - $.
ΦDO=DIO/ABS=1–ΦPO=(FO/FM)Thermal dissipation quantum yield, DTO is the energy ?u used to thermal dissipation
δRO=(1–VI)/(1–VJ)Efficiency/probability with which an electron from the intersystem electron
ΦROPO×Ψo×δROQuantum yield of reduction of end electron acceptors of PSI
Sm=Area/FVNormalized total complementary area above the OJIP transient
MO=4×[(F300μs?F50μs)/(FM?F50μs)]Approximated initial slope (in?ms?1) of the ?uorescent transient, relating to the closure rate of reaction centers
N=Sm/Ss=Sm×MO×(1/VJ)Turnover number: number of the primary quinone electron acceptors of PSⅡ (QA) reduction events between time = 0 and time to reach FM, where Sm is normalized total complementary area above the OJIP transient (re?ecting multiple-turnover QA reduction events), Ss is normalized total complementary area corresponding only to the O-J phase (re?ecting single-turnover QA reduction events).
RC/CSO=?ΦPO×(VJ/MOFODensity of active PSⅡ reaction center (RC), CS denotes cross section (at time = 0)
ABS/RC=(MO/VJ)/[1–(FO/FM)]Absorption ?ux per RC corresponding directly to its apparent antenna size-ratio between chlorophyll in antenna and chlorophyll in reaction center (RC)
TRO/RC=MO×(1/VJ)Trapped (maximum) energy flux (leading to QA reduction) per reaction center (RC) (at time = 0)
ETO/RC=(MO/VJ)×(1–VJ)Electron transport ?ux from ${\rm{Q}}_{\rm{A}}^ - $ to plastoquinone per RC at time = 0
DIO/RC=ABS/RC–TRO/RCDissipation energy flux per PSⅡ RC at time = 0
PIABS=(RC/ABS)×[ΦPO/(1–ΦPO)]×[Ψo/(1–Ψo)]Performance index on absorption basis


下载: 导出CSV
Table3.Main stem nodes number above the uppermost white flower at the first node of fruit branch of different cotton genotypes in 2012
GenotypeDate (month-day)
06-2807-0507-1207-1907-26
Baimian19.4a7.5a7.2a6.6a3.8a
Baimian58.4b7.1a6.7b5.9b3.8a
DP99B8.3b6.7b6.8b6.0b3.8a
Different lowercase letters in the same column indicated significant differences among different cotton genotypes at P < 0.05.


下载: 导出CSV
Table4.Trends of the performance index based on light energy absorption (PIABS) with time for different cotton genotypes in 2012
Date (month-day)Baimian1Baimian5DP99B
07-2170.82a73.07a74.69a
08-1063.71a59.98a47.62b
08-3059.28a58.65a43.94b
09-2038.39a38.22a28.23b
10-1130.36a17.41b7.72c
Different lowercase letters in the same line at the same date indicated significant differences among genotypes at P < 0.05.


下载: 导出CSV
Table5.Mean values of PSⅡ reaction center numbers and energy allocation of three cotton genotypes in different days
ParameterDate(month-day)GenotypeParameterDate(month-day)Genotype
Baimian1Baimian5DP99BBaimian1Baimian5DP99B
ΦPO07-210.82a0.82a0.82aABS/RC07-211.57a1.59a1.54a
08-100.81a0.82a0.81a08-101.46a1.50a1.43a
08-300.82a0.82a0.82a08-301.78a1.78a1.81a
09-200.81a0.83a0.79b09-201.84a1.85a1.79a
10-110.80a0.76b0.71c10-111.85b2.00b2.25a
ΦEO07-210.57a0.57a0.58aTRO/RC07-211.28a1.30a1.27a
08-100.54a0.56a0.52a08-101.19a1.18a1.16a
08-300.57a0.58a0.56a08-301.42a1.37a1.46a
09-200.49a0.51a0.45a09-201.45a1.48a1.46a
10-110.46a0.39b0.21c10-111.46b1.51ab1.58a
ΦDO07-210.18a0.18a0.18aETO/RC07-210.89a0.90a0.91a
08-100.19a0.19a0.19a08-100.77a0.81a0.76a
08-300.19a0.18a0.19a08-301.01a0.99a1.02a
09-200.19b0.18b0.22a09-200.84a0.91a0.83a
10-110.20 c0.24 b0.32 a10-110.80a0.73ab0.52b
ΦRO07-210.40 a0.39 a0.40 aDIO/RC07-210.29a0.29a0.28a
08-100.36 a0.38 a0.36 a08-100.27a0.27a0.27a
08-300.35 a0.38 a0.34 a08-300.33a0.30a0.33a
09-200.27a0.26a0.26a09-200.36a0.35a0.38a
10-110.24a0.24a0.15b10-110.39c0.49b0.73a
Different lowercase letters in the same line at the same date indicated significant differences among genotypes at P < 0.05.


下载: 导出CSV

参考文献(51)
BAKER N R, ROSENQVIST E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities[J]. Journal of Experimental Botany, 55(403): 1607-1621 doi: 10.1093/jxb/erh196
BAKER N R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 59: 89-113 doi: 10.1146/annurev.arplant.59.032607.092759
BOUREIMA S, OUKARROUM A, DIOUF M, et al. 2012. Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence[J]. Environmental and Experimental Botany, 81: 37-43 doi: 10.1016/j.envexpbot.2012.02.015
BROUDER S M, CASSMAN K G. 1990. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil[J]. Field Crops Research, 23(3/4): 187-203
CHEN S G, YANG J, ZHANG M S, et al. 2016. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P[J]. Environmental and Experimental Botany, 122: 126-140 doi: 10.1016/j.envexpbot.2015.09.011
CHEN Y Z, DONG H Z. 2016. Mechanisms and regulation of senescence and maturity performance in cotton[J]. Field Crops Research, 189: 1-9 doi: 10.1016/j.fcr.2016.02.003
CHEN Y Z, KONG X Q, DONG H Z. 2018. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton[J]. Field Crops Research, 216: 10-21 doi: 10.1016/j.fcr.2017.11.002
DEELL J R, VAN KOOTEN O, PRANGE R K, et al. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology[J]. Horticultural Reviews, 23: 69-107
DONG H Z, LI W J, TANG W, et al. 2006. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 98(2/3): 106-115
DONG H Z, LI W J, TANG W, et al. 2005. Research progress in physiological premature senescence in cotton[J]. Acta Gossypii Sinica, 17(1): 56-60
FALQUETO A R, CASSOL D, MAGALH ES JUNIOR A M M, et al. 2009. Physiological analysis of leaf senescence of two rice cultivars with different yield potential[J]. Pesquisa Agropecuária Brasileira, 44: 695-700 doi: 10.1590/S0100-204X2009000700007
GOLTSEV V N, KALAJI H M, PAUNOV M, et al. 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus[J]. Russian Journal of Plant Physiology, 63(6): 869-893 doi: 10.1134/S1021443716050058
GOVINDJEE, PAPAGEORGIOU G. 1971. Chlorophyll fluorescence and photosynthesis: fluorescence transients[M]//Photophysiology. Amsterdam: Elsevier.
GREGERSEN P L, HOLM P B, KRUPINSKA K. 2008. Leaf senescence and nutrient remobilisation in barley and wheat[J]. Plant Biology: Stuttgart, Germany, 10(1): 37-49
GROVER A, MOHANTY P. 1993. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts[M]//ABROL Y P. Photosynthesis: Photoreactions to Plant Productivity. New Delhi: Springer Science+Business Media Dordrecht, 225-255
GROVER A, SABAT S C, MOHANTY P. 1986. Effect of temperature on photosynthetic activities of senescing detached wheat leaves[J]. Plant and Cell Physiology, 27(1): 117-126
GROVER A. 1993. How do senescing leaves lose photosynthetic activity?[J]. Current Science, 64: 226-234
GUO Y, TAN J L. 2015. Recent advances in the application of chlorophylla fluorescence from photosystem Ⅱ[J]. Photochemistry and Photobiology, 91(1): 1-14 doi: 10.1111/php.12362
HEERDEN P D R V, TSIMILLI-MICHAEL M, KRUGER G H J, et al. 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J]. Physiologia Plantarum, 117: 476-491 doi: 10.1034/j.1399-3054.2003.00056.x
HOLLAND V, KOLLER S, BRüGGEMANN W. 2014. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis[J]. Plant Biology: Stuttgart, Germany, 16(4): 801-808 doi: 10.1111/plb.12105
HU Z B, WANG S F, ZHANG X, et al. 2014. Differences of potassium efficiency and root responses to potassium deficiency between short-and long-season cotton genotypes[J]. Acta Agriculturae Boreali-Sinica, 29(5): 218-225
IVANOV A G, HURRY V, SANE P V, et al. 2008. Reaction centre quenching of excess light energy and photoprotection of photosystem Ⅱ[J]. Journal of Plant Biology, 51(2): 85-96 doi: 10.1007/BF03030716
KALAJI H M, OUKARROUM A, ALEXANDROV V, et al. 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements[J]. Plant Physiology and Biochemistry, 81: 16-25 doi: 10.1016/j.plaphy.2014.03.029
KAUTSKY H, HIRSCH A. 1931. Neue versuche zur kohlens?ureassimilation[J]. Naturwissenschaften, 19(48): 964
LAZáR D. 2015. Parameters of photosynthetic energy partitioning[J]. Journal of Plant Physiology, 175: 131-147 doi: 10.1016/j.jplph.2014.10.021
LIM P O, KIM H J, GIL NAM H. 2007. Leaf senescence[J]. Annual Review of Plant Biology, 58(1): 115-136 doi: 10.1146/annurev.arplant.57.032905.105316
LU Q T, LU C M, ZHANG J H, et al. 2002. Photosynthesis and chlorophyllafluorescence during flag leaf senescence of field-grown wheat plants[J]. Journal of Plant Physiology, 159(11): 1173-1178 doi: 10.1078/0176-1617-00727
PAPAGEORGIOU G. 2013. Chlorophyll fluorescence and photosynthesis: fluorescence transients[J]. Photophysiology, 1
PAUNOV M, KOLEVA L, VASSILEV A, et al. 2018. Effects of differentmetals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat[J]. International Journal of Molecular Sciences, 19: 787 doi: 10.3390/ijms19030787
POLLASTRINI M, HOLLAND V, BRüGGEMANN W, et al. 2014. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology[J]. Plant Biology: Stuttgart, Germany, 16(2): 323-331 doi: 10.1111/plb.12068
RAJCAN I, DWYER L M, TOLLENAAR M. 1999. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence[J]. Field Crops Research, 63(1): 13-17 doi: 10.1016/S0378-4290(99)00023-4
RAJCAN I, TOLLENAAR M. 1999. Source: sink ratio and leaf senescence in maize: Ⅰ. Dry matter accumulation and partitioning during grain filling[J]. Field Crops Research, 60(3): 245-253 doi: 10.1016/S0378-4290(98)00142-7
RAJCAN I, TOLLENAAR M. 1999. Source: sink ratio and leaf senescence in maize: Ⅱ. Nitrogen metabolism during grain filling[J]. Field Crops Research, 60(3): 255-265 doi: 10.1016/S0378-4290(98)00143-9
RIPLEY B S, REDFERN S P, DAMES J. 2004. Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence kinetics[J]. South African Journal of Science, 100(11/12): 615-618
SMART C M. 1994. Gene expression during leaf senescence[J]. New Phytologist, 126(3): 419-448 doi: 10.1111/j.1469-8137.1994.tb04243.x
STRASSER B J, STRASSER R J. 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-test[M]//Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 4869-4872
STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. 2004. Analysis of the chlorophyll a fluorescence transient[M]//Chlorophyll a Fluorescence. Dordrecht: Springer Netherlands, 321-362
TANG G, LI X, LIN L, et al. 2015. Combined effects of girdling and leaf removal on fluorescence characteristic of Alhagi sparsifolia leaf senescence[J]. Plant Biology, 17(5): 980-989 doi: 10.1111/plb.12309
TSIMILLI-MICHAEL M, STRASSER R J. 2008. In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants[M]//Mycorrhiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 679-703
URBANO BRON I, VASCONCELOS RIBEIRO R, AZZOLINI M, et al. 2004. Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' Papaya fruit[J]. Postharvest Biology and Technology, 33(2): 163-173 doi: 10.1016/j.postharvbio.2004.02.004
VAN HEERDEN P D, TSIMILLI-MICHAEL M, KRüGER G H, et al. 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J]. Physiologia Plantarum, 117(4): 476-491 doi: 10.1034/j.1399-3054.2003.00056.x
WANG S F, XUE H Y, ZHANG Z Y, et al. 2020. Coordination of root growth and leaf senescence in cotton[J]. Acta Agronomica Sinica, 46(1): 93-101 doi: 10.3724/SP.J.1006.2020.94043
WANG Y W, XU C, LV C F, et al. 2016. Chlorophyll a fluorescence analysis of high-yield rice (Oryza sativa L. ) LYPJ during leaf senescence[J]. Photosynthetica, 54(3): 422-429 doi: 10.1007/s11099-016-0185-y
WANG Y W, ZHANG J J, YU J, et al. 2014. Photosynthetic changes of flag leaves during senescence stage in super high-yield hybrid rice LYPJ grown in field condition[J]. Plant Physiology and Biochemistry, 82: 194-201 doi: 10.1016/j.plaphy.2014.06.005
WENG X Y, XU H X, JIANG D A. 2005. Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plant[J]. Journal of Integrative Plant Biology, 47: 560-566 doi: 10.1111/j.1744-7909.2005.00098.x
WINGLER A, MARèS M, POURTAU N. 2004. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence[J]. New Phytologist, 161(3): 781-789 doi: 10.1111/j.1469-8137.2004.00996.x
WOOLHOUSE H. 1987. Leaf senescence[M]//SMITH H, GRIERSON D. The Biology of Plant Development. Oxford: Blackwell Scientific Publications, 256-284
WRIGHT P R. 1999. Premature senescence of cotton (Gossypium hirsutum L. ) — Predominantly a potassium disorder caused by an imbalance of source and sink[J]. Plant and Soil, 211(2): 231-239 doi: 10.1023/A:1004652728420
YUSUF M A, KUMAR D, RAJWANSHI R, et al. 2010. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. Biochimica et Biophysica Acta, 1797(8): 1428-1438 doi: 10.1016/j.bbabio.2010.02.002
ZHANG Z Y, TIAN X L, DUAN L S, et al. 2007. Differential responses of conventional and bt-transgenic cotton to potassium deficiency[J]. Journal of Plant Nutrition, 30(5): 659-670 doi: 10.1080/01904160701289206
?IV?áK M, BRESTI? M, OL?OVSKá K, et al. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L[J]. Plant, Soil and Environment, 54(4): 133-139 doi: 10.17221/392-PSE

相关话题/棉花 系统 电子 图片 创新