王素芳,
张新,
张志勇,
河南科技学院/河南省现代生物育种协同创新中心/河南省棉麦分子生态和种质创新重点实验室 新乡 453003
基金项目: the Program for Innovative Research Team (in Science and Technology) in University of Henan Province21IRTSTHN023
the National Natural Science Foundation of China31571600
the National Natural Science Foundation of China31571600
详细信息
作者简介:
通讯作者:张志勇, 主要研究方向为作物栽培生理。E-mail: z_zy123@126.com
中图分类号:S562计量
文章访问数:115
HTML全文浏览量:9
PDF下载量:224
被引次数:0
出版历程
收稿日期:2020-11-17
录用日期:2021-02-20
刊出日期:2021-05-01
The rapid chlorophyll a fluorescence characteristics of different cotton genotypes reflect differences in leaf senescence
XUE Huiyun,WANG Sufang,
ZHANG Xin,
ZHANG Zhiyong,
Henan Institute of Science and Technology/Henan Collaborative Innovation Center of Modern Biological Breeding/Henan Key Laboratory for Molecular Ecology and Germplasm Innovation of Cotton and Wheat, Xinxiang 453003, China
Funds: the Program for Innovative Research Team (in Science and Technology) in University of Henan Province21IRTSTHN023
the National Natural Science Foundation of China31571600
the National Natural Science Foundation of China31571600
More Information
Corresponding author:ZHANG Zhiyong, E-mail: z_zy123@126.com
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:光系统Ⅱ(PSⅡ)的光反应与作物光合能力密切相关。为了获得更多关于叶片衰老过程中PSⅡ状态的详细信息并快速筛选出具有不同叶片光合功能持续时间的棉花基因型,本试验利用快速叶绿素荧光技术研究了生产上报道叶片衰老快慢不同的3种棉花基因型倒一叶衰老过程中的PSⅡ的光化学反应。结果显示,基于光吸收的性能指数(PIABS)将‘百棉1号’ ‘百棉5号’和‘DP99B’分为晚衰型、中间型和早衰型。3种基因型棉花品种叶片衰老过程中电子传递受抑制情况遵循同样的规则。放氧复合体(OEC)在生育后期大量降解;PSⅡ受体侧的抑制情况要大于供体侧;叶片衰老显著限制光系统Ⅱ-光系统I间的电子传递;随着叶片衰老,用于热耗散和还原初级醌受体(QA)的能量增加,而用于PSⅡ电子传递链中QA还原(QA-)之后电子传递的能量下降。但是叶片衰老过程中,电子传递受抑制程度(除荧光开始到荧光最大时间段之间的QA还原次数之外)为‘DP99B’ > ‘百棉5号’ > ‘百棉1号’。由此可知,不同棉花基因型的叶绿素荧光特征可快速、无损地反映叶片衰老的快慢及内在生理机制。
关键词:棉花/
叶片衰老/
叶绿素荧光/
光系统Ⅱ(PSⅡ)/
快速叶绿素荧光参数
Abstract:The light reactions of photosystem Ⅱ (PSⅡ) is greatly associated with the photosynthetic capacity. In order to capture more detailed information describing the status of PSⅡ during leaf senescence and rapidly screen cotton (Gossypium L.) genotypes with different duration of photosynthetic capacity, the PSⅡ photochemistry of the first leaves counted from the stem top of three cotton genotypes ('Baimian1' 'Baimian5' and 'DP99B') presented different leaf senescence progresses in production were examined by chlorophyll a fluorescence (Chl F) analysis during leaf senescence. The results showed that 'Baimian1' 'Baimian5' and 'DP99B' were late, intermediate and early aging types, respectively, based on the performance index of light absorption (PIABS). The three genotypes complied with the similar patterns in electrical transferring inhibition accompanying leaf senescence. The depletion of oxygen-evolving complex (OEC) was obvious at the late growth stage. The inhibition of the acceptor side of PSⅡ was greater than that of the donor side. The electron flow that through the light reactions of photosystem Ⅱ and photosystem Ⅰwas significantly limited accompanying leaf senescence. With the duration of leaf senescence, the energy distributed to thermal dissipation and the primary quinone electron acceptors of PSⅡ (QA) restoration increased, and correspondingly the energy used to transport an electron into the electron transport chain beyond QA- (the reduction state of QA) declined. However, three cotton genotypes showed greater and greater electron transferring inhibition, except the number of QA reduction events between time=0 and time to reach maximal fluorescence, in the order of 'DP99B' > 'Baimian5' > 'Baimian1' with the duration of leaf senescence. It can be seen that the chlorophyll fluorescence characteristics can quickly and noninvasively reflect the senescence and the internal physiological mechanism of leaf senescence among different cotton genotypes.
Key words:Cotton/
Leaf senescence/
Chlorophyll a fluorescence/
Photosystem Ⅱ/
Rapid chlorophyll a fluorescence parameter
HTML全文
Figure1.Double normalized chlorophyll ?uorescence curves of the first leaves from top of three cotton genotypes
下载: 全尺寸图片幻灯片
Figure2.Variation of the values of RC/CSO and WK in three cotton genotypes during leaf senescence
下载: 全尺寸图片幻灯片
Figure3.Variation of parameters at acceptor side of PSⅡ of three cotton genotypes during leaf senescence
下载: 全尺寸图片幻灯片
Table1.The weather conditions of Xinxiang, Henan, China in 2012 and from 1961 to 2011
Time | Temperature (℃) | Rainfall (mm) | Sunshine (h) | |||||||
2012 | Average from 1961 to 2011 | 2012 | Average from1961 to 2011 | 2012 | Average from1961 to 2011 | |||||
Early July | 26.69 | 27.32 | 54.74 | 55.30 | 62.75 | 52.20 | ||||
Middle July | 27.07 | 28.47 | 51.15 | 11.10 | 61.70 | 66.40 | ||||
Late July | 27.53 | 29.55 | 50.62 | 14.30 | 72.32 | 78.80 | ||||
Early August | 27.26 | 27.00 | 52.08 | 44.70 | 68.21 | 62.00 | ||||
Middle August | 25.89 | 25.70 | 41.82 | 36.40 | 64.16 | 43.90 | ||||
Late August | 24.78 | 24.99 | 31.65 | 0.40 | 71.37 | 55.80 | ||||
Early September | 22.80 | 23.56 | 27.95 | 22.30 | 58.06 | 50.90 | ||||
Middle September | 21.12 | 20.64 | 22.35 | 22.80 | 58.69 | 68.60 | ||||
Late September | 25.56 | 20.59 | 16.94 | 8.70 | 59.08 | 58.20 | ||||
Early October | 17.25 | 19.92 | 12.14 | 0.40 | 57.46 | 73.10 |
下载: 导出CSV
Table2.De?nitions of measured and calculated chlorophyll a ?uorescence parameters used in the experiment
Terms and formulae | Description |
Ft | Fluorescence at time after onset of actinic illumination |
FO~F50μs | Minimum ?uorescence, when all PSⅡ reaction centers (RCs) are open. |
FJ | Fluorescence at the J-step (2 ms) of the OJIP transient |
FI | Fluorescence at the I-step (30 ms) of the OJIP transient |
FM | Maximum recorded ?uorescence at the P-step when all RCs are closed. |
FK | Fluorescence at the K-step (300 μs) of the OJIP transient |
VJ=(FJ?FO)/(FM?FO) | Relative variable fluorescence at the phase J of the fluorescence induction curve |
VI=(FI?FO)/(FM?FO) | Relative variable fluorescence at the phase I of the fluorescence induction curve |
WK=(FK?FO)/(FJ?FO) | Represent the damage to oxygen-evolving complex (OEC) |
FV=FM?FO | Maximal variable fluorescence |
ΦPO=TRO/ABS=FV/FM=[1–(FO/FM)] | Maximum quantum yield of primary photochemistry, TRO is the trapped energy ?u, ABS is the absorption energy ?u |
ΦEO=ETO/ABS=ΦPO×Ψo | Quantum yield (at time = 0) for electron transport from ${\rm{Q}}_{\rm{A}}^ - $ to plastoquinone, ETO is the energy ?u used to electron transport |
Ψo=ETO/TRO=1?VJ | Probability (at time = 0) that a trapped exciton moves an electron into the electron transport chain beyond ${\rm{Q}}_{\rm{A}}^ - $. |
ΦDO=DIO/ABS=1–ΦPO=(FO/FM) | Thermal dissipation quantum yield, DTO is the energy ?u used to thermal dissipation |
δRO=(1–VI)/(1–VJ) | Efficiency/probability with which an electron from the intersystem electron |
ΦRO=ΦPO×Ψo×δRO | Quantum yield of reduction of end electron acceptors of PSI |
Sm=Area/FV | Normalized total complementary area above the OJIP transient |
MO=4×[(F300μs?F50μs)/(FM?F50μs)] | Approximated initial slope (in?ms?1) of the ?uorescent transient, relating to the closure rate of reaction centers |
N=Sm/Ss=Sm×MO×(1/VJ) | Turnover number: number of the primary quinone electron acceptors of PSⅡ (QA) reduction events between time = 0 and time to reach FM, where Sm is normalized total complementary area above the OJIP transient (re?ecting multiple-turnover QA reduction events), Ss is normalized total complementary area corresponding only to the O-J phase (re?ecting single-turnover QA reduction events). |
RC/CSO=?ΦPO×(VJ/MO)×FO | Density of active PSⅡ reaction center (RC), CS denotes cross section (at time = 0) |
ABS/RC=(MO/VJ)/[1–(FO/FM)] | Absorption ?ux per RC corresponding directly to its apparent antenna size-ratio between chlorophyll in antenna and chlorophyll in reaction center (RC) |
TRO/RC=MO×(1/VJ) | Trapped (maximum) energy flux (leading to QA reduction) per reaction center (RC) (at time = 0) |
ETO/RC=(MO/VJ)×(1–VJ) | Electron transport ?ux from ${\rm{Q}}_{\rm{A}}^ - $ to plastoquinone per RC at time = 0 |
DIO/RC=ABS/RC–TRO/RC | Dissipation energy flux per PSⅡ RC at time = 0 |
PIABS=(RC/ABS)×[ΦPO/(1–ΦPO)]×[Ψo/(1–Ψo)] | Performance index on absorption basis |
下载: 导出CSV
Table3.Main stem nodes number above the uppermost white flower at the first node of fruit branch of different cotton genotypes in 2012
Genotype | Date (month-day) | ||||
06-28 | 07-05 | 07-12 | 07-19 | 07-26 | |
Baimian1 | 9.4a | 7.5a | 7.2a | 6.6a | 3.8a |
Baimian5 | 8.4b | 7.1a | 6.7b | 5.9b | 3.8a |
DP99B | 8.3b | 6.7b | 6.8b | 6.0b | 3.8a |
Different lowercase letters in the same column indicated significant differences among different cotton genotypes at P < 0.05. |
下载: 导出CSV
Table4.Trends of the performance index based on light energy absorption (PIABS) with time for different cotton genotypes in 2012
Date (month-day) | Baimian1 | Baimian5 | DP99B |
07-21 | 70.82a | 73.07a | 74.69a |
08-10 | 63.71a | 59.98a | 47.62b |
08-30 | 59.28a | 58.65a | 43.94b |
09-20 | 38.39a | 38.22a | 28.23b |
10-11 | 30.36a | 17.41b | 7.72c |
Different lowercase letters in the same line at the same date indicated significant differences among genotypes at P < 0.05. |
下载: 导出CSV
Table5.Mean values of PSⅡ reaction center numbers and energy allocation of three cotton genotypes in different days
Parameter | Date(month-day) | Genotype | Parameter | Date(month-day) | Genotype | |||||
Baimian1 | Baimian5 | DP99B | Baimian1 | Baimian5 | DP99B | |||||
ΦPO | 07-21 | 0.82a | 0.82a | 0.82a | ABS/RC | 07-21 | 1.57a | 1.59a | 1.54a | |
08-10 | 0.81a | 0.82a | 0.81a | 08-10 | 1.46a | 1.50a | 1.43a | |||
08-30 | 0.82a | 0.82a | 0.82a | 08-30 | 1.78a | 1.78a | 1.81a | |||
09-20 | 0.81a | 0.83a | 0.79b | 09-20 | 1.84a | 1.85a | 1.79a | |||
10-11 | 0.80a | 0.76b | 0.71c | 10-11 | 1.85b | 2.00b | 2.25a | |||
ΦEO | 07-21 | 0.57a | 0.57a | 0.58a | TRO/RC | 07-21 | 1.28a | 1.30a | 1.27a | |
08-10 | 0.54a | 0.56a | 0.52a | 08-10 | 1.19a | 1.18a | 1.16a | |||
08-30 | 0.57a | 0.58a | 0.56a | 08-30 | 1.42a | 1.37a | 1.46a | |||
09-20 | 0.49a | 0.51a | 0.45a | 09-20 | 1.45a | 1.48a | 1.46a | |||
10-11 | 0.46a | 0.39b | 0.21c | 10-11 | 1.46b | 1.51ab | 1.58a | |||
ΦDO | 07-21 | 0.18a | 0.18a | 0.18a | ETO/RC | 07-21 | 0.89a | 0.90a | 0.91a | |
08-10 | 0.19a | 0.19a | 0.19a | 08-10 | 0.77a | 0.81a | 0.76a | |||
08-30 | 0.19a | 0.18a | 0.19a | 08-30 | 1.01a | 0.99a | 1.02a | |||
09-20 | 0.19b | 0.18b | 0.22a | 09-20 | 0.84a | 0.91a | 0.83a | |||
10-11 | 0.20 c | 0.24 b | 0.32 a | 10-11 | 0.80a | 0.73ab | 0.52b | |||
ΦRO | 07-21 | 0.40 a | 0.39 a | 0.40 a | DIO/RC | 07-21 | 0.29a | 0.29a | 0.28a | |
08-10 | 0.36 a | 0.38 a | 0.36 a | 08-10 | 0.27a | 0.27a | 0.27a | |||
08-30 | 0.35 a | 0.38 a | 0.34 a | 08-30 | 0.33a | 0.30a | 0.33a | |||
09-20 | 0.27a | 0.26a | 0.26a | 09-20 | 0.36a | 0.35a | 0.38a | |||
10-11 | 0.24a | 0.24a | 0.15b | 10-11 | 0.39c | 0.49b | 0.73a | |||
Different lowercase letters in the same line at the same date indicated significant differences among genotypes at P < 0.05. |
下载: 导出CSV
参考文献
BAKER N R, ROSENQVIST E. 2004. Applications of chlorophyll fluorescence can improve crop production strategies: an examination of future possibilities[J]. Journal of Experimental Botany, 55(403): 1607-1621 doi: 10.1093/jxb/erh196 |
BAKER N R. 2008. Chlorophyll fluorescence: a probe of photosynthesis in vivo[J]. Annual Review of Plant Biology, 59: 89-113 doi: 10.1146/annurev.arplant.59.032607.092759 |
BOUREIMA S, OUKARROUM A, DIOUF M, et al. 2012. Screening for drought tolerance in mutant germplasm of sesame (Sesamum indicum) probing by chlorophyll a fluorescence[J]. Environmental and Experimental Botany, 81: 37-43 doi: 10.1016/j.envexpbot.2012.02.015 |
BROUDER S M, CASSMAN K G. 1990. Root development of two cotton cultivars in relation to potassium uptake and plant growth in a vermiculitic soil[J]. Field Crops Research, 23(3/4): 187-203 |
CHEN S G, YANG J, ZHANG M S, et al. 2016. Classification and characteristics of heat tolerance in Ageratina adenophora populations using fast chlorophyll a fluorescence rise O-J-I-P[J]. Environmental and Experimental Botany, 122: 126-140 doi: 10.1016/j.envexpbot.2015.09.011 |
CHEN Y Z, DONG H Z. 2016. Mechanisms and regulation of senescence and maturity performance in cotton[J]. Field Crops Research, 189: 1-9 doi: 10.1016/j.fcr.2016.02.003 |
CHEN Y Z, KONG X Q, DONG H Z. 2018. Removal of early fruiting branches impacts leaf senescence and yield by altering the sink/source ratio of field-grown cotton[J]. Field Crops Research, 216: 10-21 doi: 10.1016/j.fcr.2017.11.002 |
DEELL J R, VAN KOOTEN O, PRANGE R K, et al. 1999. Applications of chlorophyll fluorescence techniques in postharvest physiology[J]. Horticultural Reviews, 23: 69-107 |
DONG H Z, LI W J, TANG W, et al. 2006. Yield, quality and leaf senescence of cotton grown at varying planting dates and plant densities in the Yellow River Valley of China[J]. Field Crops Research, 98(2/3): 106-115 |
DONG H Z, LI W J, TANG W, et al. 2005. Research progress in physiological premature senescence in cotton[J]. Acta Gossypii Sinica, 17(1): 56-60 |
FALQUETO A R, CASSOL D, MAGALH ES JUNIOR A M M, et al. 2009. Physiological analysis of leaf senescence of two rice cultivars with different yield potential[J]. Pesquisa Agropecuária Brasileira, 44: 695-700 doi: 10.1590/S0100-204X2009000700007 |
GOLTSEV V N, KALAJI H M, PAUNOV M, et al. 2016. Variable chlorophyll fluorescence and its use for assessing physiological condition of plant photosynthetic apparatus[J]. Russian Journal of Plant Physiology, 63(6): 869-893 doi: 10.1134/S1021443716050058 |
GOVINDJEE, PAPAGEORGIOU G. 1971. Chlorophyll fluorescence and photosynthesis: fluorescence transients[M]//Photophysiology. Amsterdam: Elsevier. |
GREGERSEN P L, HOLM P B, KRUPINSKA K. 2008. Leaf senescence and nutrient remobilisation in barley and wheat[J]. Plant Biology: Stuttgart, Germany, 10(1): 37-49 |
GROVER A, MOHANTY P. 1993. Leaf senescence-induced alterations in structure and function of higher plant chloroplasts[M]//ABROL Y P. Photosynthesis: Photoreactions to Plant Productivity. New Delhi: Springer Science+Business Media Dordrecht, 225-255 |
GROVER A, SABAT S C, MOHANTY P. 1986. Effect of temperature on photosynthetic activities of senescing detached wheat leaves[J]. Plant and Cell Physiology, 27(1): 117-126 |
GROVER A. 1993. How do senescing leaves lose photosynthetic activity?[J]. Current Science, 64: 226-234 |
GUO Y, TAN J L. 2015. Recent advances in the application of chlorophylla fluorescence from photosystem Ⅱ[J]. Photochemistry and Photobiology, 91(1): 1-14 doi: 10.1111/php.12362 |
HEERDEN P D R V, TSIMILLI-MICHAEL M, KRUGER G H J, et al. 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J]. Physiologia Plantarum, 117: 476-491 doi: 10.1034/j.1399-3054.2003.00056.x |
HOLLAND V, KOLLER S, BRüGGEMANN W. 2014. Insight into the photosynthetic apparatus in evergreen and deciduous European oaks during autumn senescence using OJIP fluorescence transient analysis[J]. Plant Biology: Stuttgart, Germany, 16(4): 801-808 doi: 10.1111/plb.12105 |
HU Z B, WANG S F, ZHANG X, et al. 2014. Differences of potassium efficiency and root responses to potassium deficiency between short-and long-season cotton genotypes[J]. Acta Agriculturae Boreali-Sinica, 29(5): 218-225 |
IVANOV A G, HURRY V, SANE P V, et al. 2008. Reaction centre quenching of excess light energy and photoprotection of photosystem Ⅱ[J]. Journal of Plant Biology, 51(2): 85-96 doi: 10.1007/BF03030716 |
KALAJI H M, OUKARROUM A, ALEXANDROV V, et al. 2014. Identification of nutrient deficiency in maize and tomato plants by in vivo chlorophyll a fluorescence measurements[J]. Plant Physiology and Biochemistry, 81: 16-25 doi: 10.1016/j.plaphy.2014.03.029 |
KAUTSKY H, HIRSCH A. 1931. Neue versuche zur kohlens?ureassimilation[J]. Naturwissenschaften, 19(48): 964 |
LAZáR D. 2015. Parameters of photosynthetic energy partitioning[J]. Journal of Plant Physiology, 175: 131-147 doi: 10.1016/j.jplph.2014.10.021 |
LIM P O, KIM H J, GIL NAM H. 2007. Leaf senescence[J]. Annual Review of Plant Biology, 58(1): 115-136 doi: 10.1146/annurev.arplant.57.032905.105316 |
LU Q T, LU C M, ZHANG J H, et al. 2002. Photosynthesis and chlorophyllafluorescence during flag leaf senescence of field-grown wheat plants[J]. Journal of Plant Physiology, 159(11): 1173-1178 doi: 10.1078/0176-1617-00727 |
PAPAGEORGIOU G. 2013. Chlorophyll fluorescence and photosynthesis: fluorescence transients[J]. Photophysiology, 1 |
PAUNOV M, KOLEVA L, VASSILEV A, et al. 2018. Effects of differentmetals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat[J]. International Journal of Molecular Sciences, 19: 787 doi: 10.3390/ijms19030787 |
POLLASTRINI M, HOLLAND V, BRüGGEMANN W, et al. 2014. Interactions and competition processes among tree species in young experimental mixed forests, assessed with chlorophyll fluorescence and leaf morphology[J]. Plant Biology: Stuttgart, Germany, 16(2): 323-331 doi: 10.1111/plb.12068 |
RAJCAN I, DWYER L M, TOLLENAAR M. 1999. Note on relationship between leaf soluble carbohydrate and chlorophyll concentrations in maize during leaf senescence[J]. Field Crops Research, 63(1): 13-17 doi: 10.1016/S0378-4290(99)00023-4 |
RAJCAN I, TOLLENAAR M. 1999. Source: sink ratio and leaf senescence in maize: Ⅰ. Dry matter accumulation and partitioning during grain filling[J]. Field Crops Research, 60(3): 245-253 doi: 10.1016/S0378-4290(98)00142-7 |
RAJCAN I, TOLLENAAR M. 1999. Source: sink ratio and leaf senescence in maize: Ⅱ. Nitrogen metabolism during grain filling[J]. Field Crops Research, 60(3): 255-265 doi: 10.1016/S0378-4290(98)00143-9 |
RIPLEY B S, REDFERN S P, DAMES J. 2004. Quantification of the photosynthetic performance of phosphorus-deficient Sorghum by means of chlorophyll-a fluorescence kinetics[J]. South African Journal of Science, 100(11/12): 615-618 |
SMART C M. 1994. Gene expression during leaf senescence[J]. New Phytologist, 126(3): 419-448 doi: 10.1111/j.1469-8137.1994.tb04243.x |
STRASSER B J, STRASSER R J. 1995. Measuring fast fluorescence transients to address environmental questions: the JIP-test[M]//Photosynthesis: from Light to Biosphere. Dordrecht: Springer Netherlands, 4869-4872 |
STRASSER R J, TSIMILLI-MICHAEL M, SRIVASTAVA A. 2004. Analysis of the chlorophyll a fluorescence transient[M]//Chlorophyll a Fluorescence. Dordrecht: Springer Netherlands, 321-362 |
TANG G, LI X, LIN L, et al. 2015. Combined effects of girdling and leaf removal on fluorescence characteristic of Alhagi sparsifolia leaf senescence[J]. Plant Biology, 17(5): 980-989 doi: 10.1111/plb.12309 |
TSIMILLI-MICHAEL M, STRASSER R J. 2008. In vivo assessment of stress impact on plant's vitality: applications in detecting and evaluating the beneficial role of mycorrhization on host plants[M]//Mycorrhiza. Berlin, Heidelberg: Springer Berlin Heidelberg, 679-703 |
URBANO BRON I, VASCONCELOS RIBEIRO R, AZZOLINI M, et al. 2004. Chlorophyll fluorescence as a tool to evaluate the ripening of 'Golden' Papaya fruit[J]. Postharvest Biology and Technology, 33(2): 163-173 doi: 10.1016/j.postharvbio.2004.02.004 |
VAN HEERDEN P D, TSIMILLI-MICHAEL M, KRüGER G H, et al. 2003. Dark chilling effects on soybean genotypes during vegetative development: parallel studies of CO2 assimilation, chlorophyll a fluorescence kinetics O-J-I-P and nitrogen fixation[J]. Physiologia Plantarum, 117(4): 476-491 doi: 10.1034/j.1399-3054.2003.00056.x |
WANG S F, XUE H Y, ZHANG Z Y, et al. 2020. Coordination of root growth and leaf senescence in cotton[J]. Acta Agronomica Sinica, 46(1): 93-101 doi: 10.3724/SP.J.1006.2020.94043 |
WANG Y W, XU C, LV C F, et al. 2016. Chlorophyll a fluorescence analysis of high-yield rice (Oryza sativa L. ) LYPJ during leaf senescence[J]. Photosynthetica, 54(3): 422-429 doi: 10.1007/s11099-016-0185-y |
WANG Y W, ZHANG J J, YU J, et al. 2014. Photosynthetic changes of flag leaves during senescence stage in super high-yield hybrid rice LYPJ grown in field condition[J]. Plant Physiology and Biochemistry, 82: 194-201 doi: 10.1016/j.plaphy.2014.06.005 |
WENG X Y, XU H X, JIANG D A. 2005. Characteristics of gas exchange, chlorophyll fluorescence and expression of key enzymes in photosynthesis during leaf senescence in rice plant[J]. Journal of Integrative Plant Biology, 47: 560-566 doi: 10.1111/j.1744-7909.2005.00098.x |
WINGLER A, MARèS M, POURTAU N. 2004. Spatial patterns and metabolic regulation of photosynthetic parameters during leaf senescence[J]. New Phytologist, 161(3): 781-789 doi: 10.1111/j.1469-8137.2004.00996.x |
WOOLHOUSE H. 1987. Leaf senescence[M]//SMITH H, GRIERSON D. The Biology of Plant Development. Oxford: Blackwell Scientific Publications, 256-284 |
WRIGHT P R. 1999. Premature senescence of cotton (Gossypium hirsutum L. ) — Predominantly a potassium disorder caused by an imbalance of source and sink[J]. Plant and Soil, 211(2): 231-239 doi: 10.1023/A:1004652728420 |
YUSUF M A, KUMAR D, RAJWANSHI R, et al. 2010. Overexpression of gamma-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements[J]. Biochimica et Biophysica Acta, 1797(8): 1428-1438 doi: 10.1016/j.bbabio.2010.02.002 |
ZHANG Z Y, TIAN X L, DUAN L S, et al. 2007. Differential responses of conventional and bt-transgenic cotton to potassium deficiency[J]. Journal of Plant Nutrition, 30(5): 659-670 doi: 10.1080/01904160701289206 |
?IV?áK M, BRESTI? M, OL?OVSKá K, et al. 2008. Performance index as a sensitive indicator of water stress in Triticum aestivum L[J]. Plant, Soil and Environment, 54(4): 133-139 doi: 10.17221/392-PSE |