赖彦岑1,
唐宗翔1,
郑敏敏1,
史俊2,
顾麦云3,
沈健英1,
曹林奎1,
沙之敏1,,
1.上海交通大学农业与生物学院 上海 200240
2.宁波市农业科学研究院 宁波 315040
3.上海自在青西农业发展有限公司 上海 201799
基金项目: 上海市科技兴农推广项目(2018) No. 4-7
国家重点研发计划课题2016YFD08011106
详细信息
作者简介:王丰, 主要研究方向为植物营养与农田杂草控制。E-mail: wangfeng123@sjtu.edu.cn
通讯作者:沙之敏, 主要研究方向为植物营养与农业面源污染防控。E-mail: zhiminsha@sjtu.edu.cn
中图分类号:S451.1计量
文章访问数:146
HTML全文浏览量:7
PDF下载量:292
被引次数:0
出版历程
收稿日期:2020-07-18
录用日期:2020-10-25
刊出日期:2021-04-01
Effects of duckweed mulching on composition and diversity of weed communities in paddy fields
WANG Feng1,,LAI Yancen1,
TANG Zongxiang1,
ZHENG Minmin1,
SHI Jun2,
GU Maiyun3,
SHEN Jianying1,
CAO Linkui1,
SHA Zhimin1,,
1. School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
2. Ningbo Academy of Agricultural Sciences, Ningbo 315040, China
3. Shanghai Zizaiqingxi Agricultural Development Co., LTD, Shanghai 201799, China
Funds: Shanghai Science and Technology Promotion Project(2018) No. 4-7
the National Key Research and Development Program of China2016YFD08011106
More Information
Corresponding author:SHA Zhimin, E-mail: zhiminsha@sjtu.edu.cn
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:在农业可持续发展的背景下,稻田杂草防控需要兼顾生物多样性的保护。为了解浮萍覆盖对稻田杂草群落组成及物种多样性的影响,运用群落生态学的方法,研究了多根紫萍覆盖(SP)、少根紫萍覆盖(LP)和不投放浮萍(CK)3种处理下稻田杂草发生量和群落多样性在水稻4个生育期(分蘖期、孕穗期、扬花期和成熟期)的动态变化,并对水稻产量进行分析。结果表明:SP和LP处理在前两生育期分别比CK显著降低杂草密度60.3%~75.8%和81.1%~90.4%,在整个水稻生育期能分别降低杂草鲜重生物量48.0%以上和81.3%以上,杂草群落中阔叶类杂草比例明显下降。不同处理下,稻田最主要杂草类别均是莎草科杂草;不同处理的杂草群落中重要杂草的种类和相对重要程度都有较大差异,SP和LP处理重要值较高的杂草均为莎草科的萤蔺和碎米莎草,CK处理重要值较高的杂草则为阔叶类的鸭舌草;在多数生育期,两种浮萍覆盖下的杂草群落的Margalef丰富度指数、Shannon-Wiener多样性指数和Simpson优势度指数均与CK无显著差异。SP和LP处理水稻的每穗粒数和穗重均有不同程度显著提高,SP处理的水稻产量显著提高28.0%。综合上述分析,稻田投放初始覆盖面积70.0%的多根紫萍和少根紫萍都能在降低稻田杂草密度和生物量的同时维持杂草群落的多样性,且多根紫萍覆盖能促进水稻产量增长,对保护稻田生物多样性和促进农业可持续发展有重要意义。
关键词:可持续农业/
稻田/
浮萍覆盖/
杂草防控/
群落结构/
生物多样性
Abstract:Weed control and biodiversity conservation are both required for sustainable agricultural production. As duckweeds are capable of colonizing open water surfaces in several days on account of their extremely rapid growth rate, introduction of duckweeds to paddy field is considered to inhibit weed growth as a result of shading. To acquire evidence for the utility of duckweed to control weeds and the impact on weed community composition in paddy fields, a field experiment was conducted for a rice-growing seasons. Using community ecology methods, we investigated dynamic changes of weed quantity and community diversity at 4 rice growth stages (tillering stage, booting stage, flowering stage, and maturing stage) and rice grain traits at maturing stage under three treatments: rice grown with Spirodela polyrrhiza mulching (SP), rice grown with Landoltia punctata mulching (LP), and rice grown without duckweed mulching (CK). (Landoltia punctata and Spirodela polyrrhiza were introduced into the respective plots with about 70% floodwater coverage on the day of rice transplantation.) The results showed that: ten species from seven families were recorded in weed surveys. Both duckweed species significantly suppressed weed emergence. SP and LP significantly reduced weed density by 60.3%-75.8% and 81.1%-90.4%, respectively, in the first two stages; and reduced weed biomass by more than 48.0% and 81.3%, respectively, throughout the rice-growing season. Both duckweed species changed the composition of weed communities. Cyperaceae weeds were predominant in the weed communities of the SP and LP treatments. Biomass proportions of Cyperaceae weeds were more than 62.9% and 60.2% in the weed communities of the SP and LP treatments, respectively; while the proportions of broadleaf weeds decreased significantly. Cyperaceae weeds Scirpus juncoides and Cyperus iria showed higher important values in the weed communities of the SP and LP treatments. In the weed communities of the CK, broadleaf weeds Monochoria vaginalis showed the highest important values. The Bray-Curtis similarity indice between weed communities of CK and duckweed mulching treatments was less than 0.25. Correspondingly, the weed communities of CK were separated from the weed communities of duckweed mulching treatments in UPGMA clustering. Duckweed mulching showed no negative impact on plant diversity and rice grain yields. In most rice growth stages, the Margalef index, Shannon-Wiener index, and Simpson index of weed communities under three treatments were not different significantly. Due to the mitigation of weed competition and the potential nutrients supplied by decomposition of duckweed, SP and LP significantly improved grain number per panicle by 33.7% and 15.8%, respectively, and panicle weight by 28.2% and 17.0%, respectively. Rice grain yield in the SP treatment significantly increased by 28.0%. In summary, duckweed mulching reduced weed density and biomass and altered weed community composition while maintained weed diversity in paddy fields, and Spirodela polyrrhiza mulching improved rice yield. The results demonstrated that duckweed introduction to paddy fields is an effective and eco-friendly weed management strategy which is conducive to biodiversity conservation and sustainable agricultural development.
Key words:Sustainable agriculture/
Paddy field/
Duckweed mulching/
Weed control/
Community structure/
Biodiversity
HTML全文

图1试验地及调查区的示意图
Figure1.Sketch of the experimental field and survey areas


图2不同处理下水稻不同生育期各类稻田杂草的密度(A)和生物量(B)
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻的分蘖期、孕穗期、扬花期和成熟期。不同小写字母表示同一水稻生育期不同处理间差异显著(P < 0.05), 不同大写字母表示同一处理水稻不同生育期间差异显著(P < 0.05)。
Figure2.Densities (A) and biomasses (B) of different categories of weeds in paddy fields at different growth stages of rice under different treatments
SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice. Different lowercase letters at the same rice growth stage show significant differences among treatments at P < 0.05 level. Different capital letters in the same treatment show significant differences among rice growth stages at P < 0.05 level.


图3不同处理下水稻不同生育期各种稻田杂草的重要值
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻的分蘖期、孕穗期、扬花期和成熟期。Ec.cr、Le.ch、Pa.pa、Cy.ir、Sc.ju、Al.ph、As.si、Hy.du、Ma.qu和Mo.va分别表示稗、千金子、双穗雀稗、碎米莎草、萤蔺、喜旱莲子草、紫云英、水鳖、苹和鸭舌草。虚线以上为重要杂草。
Figure3.Important values of weed species in paddy fields at different growth stages of rice under different treatments
SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice. Ec.cr, Le.ch, Pa.pa, Cy.ir, Sc.ju, Al.ph, As.si, Hy.du, Ma.qu and Mo.va indicate Echinochloa crus-galli, Leptochloa chinensis, Paspalum paspaloides, Cyperus iria, Scirpus juncoides, Alternanthera philoxeroides, Astragalus sinicus, Hydrocharis dubia, Marsilea quadrifolia and Monochoria vaginalis. Above the dashed line are important weeds.


图4不同处理下水稻不同生育期稻田杂草群落的多样性指数
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻生育期的分蘖期、孕穗期、扬花期和成熟期。不同小写字母表示同一水稻生育期不同处理间差异显著(P < 0.05), 不同大写字母表示同一处理水稻不同生育期间差异显著(P < 0.05)。
Figure4.Diversity indices of weed communities in paddy fields at different growth stages of rice under different treatments
SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice. Different lowercase letters at the same rice growth stage show significant differences among treatments at P < 0.05 level. Different capital letters in the same treatment show significant differences among rice growth stages at P < 0.05 level.


图5不同处理下水稻不同生育期稻田杂草群落的UPGMA聚类
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻生育期的分蘖期、孕穗期、扬花期和成熟期。
Figure5.UPGMA clustering of weed communities in paddy fields at different growth stages of rice under different treatments
SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice.

表1不同处理下水稻不同生育期稻田杂草发生情况
Table1.Occurrence of weed species in paddy fields at different rice growth stages under different treatments
科 Family | 属 Genus | 种 Species | SP | LP | CK | |||||||||
Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅰ | Ⅱ | Ⅲ | Ⅳ | |||
禾本科 Gramineae | 稗属 Echinochloa | 稗 Echinochloa crus-galli | - | - | - | - | - | - | - | - | - | - | + | + |
千金子属 Leptochloa | 千金子 Leptochloa chinensis | + | - | - | - | + | - | - | - | - | - | - | - | |
雀稗属 Paspalum | 双穗雀稗 Paspalum paspaloides | - | + | + | - | - | + | - | + | - | - | - | + | |
莎草科 Cyperaceae | 莎草属 Cyperus | 碎米莎草 Cyperus iria | - | + | + | + | + | - | + | + | - | + | + | + |
藨草属 Scirpus | 萤蔺 Scirpus juncoides | + | + | + | + | + | + | + | + | - | - | + | - | |
苋科 Amaranthaceae | 莲子草属 Alternanthera | 喜旱莲子草 Alternanthera philoxeroides | + | + | + | - | - | + | + | + | - | + | - | + |
豆科 Leguminosae | 黄耆属 Astragalus | 紫云英 Astragalus sinicus | - | - | - | + | - | - | - | + | - | - | - | - |
水鳖科 Hydrocharitaceae | 水鳖属 Hydrocharis | 水鳖 Hydrocharis dubia | - | - | + | - | - | - | - | - | - | - | - | - |
苹科 Marsileaceae | 苹属 Marsilea | 苹 Marsilea quadrifolia | - | - | - | - | - | - | - | - | + | + | + | + |
雨久花科 Pontederiaceae | 雨久花属 Monochoria | 鸭舌草 Monochoria vaginalis | + | - | - | - | - | - | - | - | + | + | + | + |
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻的分蘖期、孕穗期、扬花期和成熟期。+表示杂草发生, -表示杂草不发生。SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice. + indicates weeds occurred. - indicates weeds did not occur. |

表2不同处理下水稻不同生育期稻田杂草群落间的Bray-Curtis相似性指数
Table2.Bray-Curtis similarity indices among weed communities in paddy fields at different growth stages of rice under different treatments
水稻生育时期 Rice growth stage | 处理 Treatment | Ⅰ | Ⅱ | Ⅲ | Ⅳ | ||||||||||
SP | LP | CK | SP | LP | CK | SP | LP | CK | SP | LP | |||||
Ⅰ | LP | 0.72 | |||||||||||||
CK | 0.07 | 0.00 | |||||||||||||
Ⅱ | SP | 0.73 | 0.66 | 0.00 | |||||||||||
LP | 0.78 | 0.58 | 0.00 | 0.86 | |||||||||||
CK | 0.13 | 0.17 | 0.69 | 0.20 | 0.06 | ||||||||||
Ⅲ | SP | 0.59 | 0.65 | 0.00 | 0.82 | 0.68 | 0.31 | ||||||||
LP | 0.53 | 0.57 | 0.00 | 0.66 | 0.53 | 0.31 | 0.78 | ||||||||
CK | 0.16 | 0.25 | 0.64 | 0.23 | 0.10 | 0.77 | 0.25 | 0.25 | |||||||
Ⅳ | SP | 0.46 | 0.64 | 0.00 | 0.60 | 0.46 | 0.25 | 0.73 | 0.87 | 0.25 | |||||
LP | 0.41 | 0.53 | 0.00 | 0.66 | 0.53 | 0.30 | 0.77 | 0.68 | 0.25 | 0.67 | |||||
CK | 0.16 | 0.14 | 0.54 | 0.29 | 0.16 | 0.74 | 0.30 | 0.23 | 0.76 | 0.14 | 0.26 | ||||
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻生育期的分蘖期、孕穗期、扬花期和成熟期。SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice. |

表3不同处理下的水稻产量性状
Table3.Rice grain traits under different treatments
处理 Treatment | 有效穗数 Effective panicle number (panicles?m–2) | 每穗粒数 Grain number per panicle | 结实率 Filled grain percentage (%) | 千粒重 1000-grain weight (g) | 穗长 Panicle length (cm) | 穗重 Panicle weight (g) | 产量 Grain yield (t·hm–2) |
SP | 218.4±9.6a | 142.7±6.1a | 93.62±1.56a | 23.76±0.13a | 14.24±0.13a | 3.045±0.194a | 6.964±0.544a |
LP | 199.2±2.9a | 123.7±2.6b | 94.50±0.69a | 23.55±0.14a | 14.04±0.22a | 2.798±0.063a | 5.492±0.206b |
CK | 225.6±15.4a | 106.8±6.4c | 94.94±0.88a | 23.73±0.19a | 13.76±0.20a | 2.375±0.056b | 5.441±0.534b |
SP、LP和CK分别表示多根紫萍覆盖、少根紫萍覆盖和不投放浮萍对照。同列不同小写字母表明处理间差异显著(P < 0.05)。SP, LP and CK indicate Spirodela polyrrhiza mulching, Landoltia punctata mulching and no duckweed mulching. Different lowercase letters in the same column show significant differences among treatments at P < 0.05 level. |

表4水稻产量性状与各生育期杂草生物量的相关性
Table4.Correlation between rice grain traits and weed biomass at different growth stages of rice
生育期 Growth stage | 有效穗数 Effective panicle number | 每穗粒数 Grain number per panicle | 结实率 Filled grain percentage | 千粒重 1000-grain weight | 穗长 Panicle length | 穗重 Panicle weight | 产量 Grain yield | |
杂草生物量 Weed biomass | Ⅰ | 0.094 | –0.365 | 0.117 | 0.304 | -0.286 | -0.345 | -0.190 |
Ⅱ | 0.071 | -0.586* | 0.261 | -0.083 | -0.449 | -0.525* | -0.379 | |
Ⅲ | 0.136 | -0.545* | 0.165 | -0.022 | -0.442 | -0.598* | -0.317 | |
Ⅳ | -0.151 | -0.684** | 0.265 | 0.038 | -0.274 | -0.631* | -0.564* | |
Ⅰ、Ⅱ、Ⅲ和Ⅳ分别表示水稻生育期的分蘖期、孕穗期、扬花期和成熟期。*和**分别表示显著(P < 0.05)和极显著(P < 0.01)相关。Ⅰ, Ⅱ, Ⅲ and Ⅳ indicate tillering stage, booting stage, flowering stage and maturing stage of rice. * and ** indicate significant correlation at P < 0.05 and P < 0.01, respectively. |

参考文献
[1] | CHAUDHARY A, ADHIKARI B B, SHRESTHA J. Effect of weed species on drought tolerant rice genotypes at Sundarbazar, Lamjung, Nepal[J]. Open Agriculture, 2019, 4(1): 65-78 doi: 10.1515/opag-2019-0006 |
[2] | 张自常, 李永丰, 张彬, 等. 稗属杂草对水稻生长发育和产量的影响[J]. 应用生态学报, 2014, 25(11): 3177-3184 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201411016.htm ZHANG Z C, LI Y F, ZHANG B, et al. Influence of weeds in Echinochloa on growth and yield of rice[J]. Chinese Journal of Applied Ecology, 2014, 25(11): 3177-3184 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201411016.htm |
[3] | 田志慧, 陆俊尧, 袁国徽, 等. 千金子与异型莎草对直播水稻产量的影响及其生态经济阈值研究[J]. 中国生态农业学报(中英文), 2020, 28(3): 328-336 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0302&flag=1 TIAN Z H, LU J Y, YUAN G H, et al. Effects and eco-economic thresholds of Leptochloa chinensis and Cyperus difformis on the yield of direct-seeding rice[J]. Chinese Journal of Eco-Agriculture, 2020, 28(3): 328-336 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2020-0302&flag=1 |
[4] | 田志慧, 沈国辉. 杂草资源的开发与利用[J]. 上海农业学报, 2012, 28(4): 152-155 doi: 10.3969/j.issn.1000-3924.2012.04.038 TIAN Z H, SHEN G H. Development and utilization of weed resources[J]. Acta Agriculturae Shanghai, 2012, 28(4): 152-155 doi: 10.3969/j.issn.1000-3924.2012.04.038 |
[5] | 孙玉芳, 陈宝雄, 金彬, 等. 有机管理对不同农田生境草本植物α、β和γ多样性的影响[J]. 中国生态农业学报(中英文), 2019, 27(11): 1617-1625 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1101&flag=1 SUN Y F, CHEN B X, JIN B, et al. Effects of organic management on the diversity of α, β and γ of herbaceous plants in different agricultural habitats[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1617-1625 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2019-1101&flag=1 |
[6] | LAL B, GAUTAM P, RAJA R, et al. Weed community composition after 43 years of long-term fertilization in tropical rice-rice system[J]. Agriculture, Ecosystems & Environment, 2014, 197: 301-308 http://www.sciencedirect.com/science/article/pii/S0167880914004046 |
[7] | 李香菊. 近年我国农田杂草防控中的突出问题与治理对策[J]. 植物保护, 2018, 44(5): 77-84 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201805014.htm LI X J. Main problems and management strategies of weeds in agricultural fields in China in recent years[J]. Plant Protection, 2018, 44(5): 77-84 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWBH201805014.htm |
[8] | LI M J, LI R H, ZHANG J E, et al. A combination of rice cultivar mixed-cropping and duck co-culture suppressed weeds and pests in paddy fields[J]. Basic and Applied Ecology, 2019, 40: 67-77 doi: 10.1016/j.baae.2019.09.003 |
[9] | ZIMDAHL R L. Fundamentals of Weed Science[M]. 5th ed. Amsterdam: Elsevier, 2018: 557-590 |
[10] | ARMENGOT L, JOSé-MARíA L, CHAMORRO L, et al. Weed harrowing in organically grown cereal crops avoids yield losses without reducing weed diversity[J]. Agronomy for Sustainable Development, 2013, 33(2): 405-411 doi: 10.1007/s13593-012-0107-8 |
[11] | HEAP I. Current status of the international herbicide-resistant weed database[DB/OL]. [2020-07-16]. http://www.weedscience.org/Home.aspx |
[12] | 陆峥嵘, 沈健英, 陆贻通. 上海稻田杂草群落变化趋势及其因子分析[J]. 上海农业学报, 2005, 21(1): 82-86 doi: 10.3969/j.issn.1000-3924.2005.01.020 LU Z R, SHEN J Y, LU Y T. The community succession of rice field weeds in shanghai area and factor analysis[J]. Acta Agriculturae Shanghai, 2005, 21(1): 82-86 doi: 10.3969/j.issn.1000-3924.2005.01.020 |
[13] | 沈健英, 陆庆丰. 水稻与杂草竞争模式及其系统序参量的应用[J]. 上海交通大学学报: 农业科学版, 2008, 26(2): 127-132 doi: 10.3969/j.issn.1671-9964.2008.02.009 SHEN J Y, LU Q F. Competition correlation between rice and weed and application of order parameter of system[J]. Journal of Shanghai Jiaotong University: Agricultural Science, 2008, 26(2): 127-132 doi: 10.3969/j.issn.1671-9964.2008.02.009 |
[14] | 潘俊峰, 万开元, 李祖章, 等. 施肥模式对晚稻田杂草群落的影响[J]. 植物营养与肥料学报, 2015, 21(1): 200-210 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201501023.htm PAN J F, WAN K Y, LI Z Z, et al. Effect of fertilization patterns on weed community in late rice fields[J]. Journal of Plant Nutrition and Fertilizer, 2015, 21(1): 200-210 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201501023.htm |
[15] | CALICIOGLU O, SHREVE M J, RICHARD T L, et al. Effect of pH and temperature on microbial community structure and carboxylic acid yield during the acidogenic digestion of duckweed[J]. Biotechnology for Biofuels, 2018, 11: 275 doi: 10.1186/s13068-018-1278-6 |
[16] | 于昌江, 朱明, 马玉彬, 等. 新型能源植物浮萍的研究进展[J]. 生命科学, 2014, 26(5): 458-464 https://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201405006.htm YU C J, ZHU M, MA Y B, et al. Advances in research on duckweeds-a new energy plant[J]. Chinese Bulletin of Life Sciences, 2014, 26(5): 458-464 https://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201405006.htm |
[17] | KHVATKOV P, CHERNOBROVKINA M, OKUNEVA A, et al. Creation of culture media for efficient duckweeds micropropagation (Wolffia arrhiza and Lemna minor) using artificial mathematical optimization models[J]. Plant Cell Tissue and Organ Culture, 2019, 136(1): 85-100 doi: 10.1007/s11240-018-1494-6 |
[18] | 李可懿, 戴伟峰, 翟春花, 等. 浮萍与稻糠控制稻田杂草效果研究[J]. 现代农业科技, 2020, (1): 97-98 doi: 10.3969/j.issn.1007-5739.2020.01.061 LI K Y, DAI W F, ZHAI C H, et al. Effect of duckweeds and rice chaff on weeds control in paddy field[J]. Modern Agricultural Science and Technology, 2020, (1): 97-98 doi: 10.3969/j.issn.1007-5739.2020.01.061 |
[19] | 黄世文, 余柳青, 段桂芳, 等. 稻糠与浮萍控制稻田杂草和稻纹枯病初步研究[J]. 植物保护, 2003, 29(6): 22-26 doi: 10.3969/j.issn.0529-1542.2003.06.007 HUANG S W, YU L Q, DUAN G F, et al. Control of weeds and rice sheath blight disease in paddy fields by rice chaff and duckweeds (Lemna spp. )[J]. Plant Protection, 2003, 29(6): 22-26 doi: 10.3969/j.issn.0529-1542.2003.06.007 |
[20] | 苏凤岩, 闻大中, 徐卿德, 等. 北方稻田生态系统研究Ⅰ. 稻萍结合系统的结构研究[J]. 应用生态学报, 1996, 7(2): 179-184 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB602.013.htm SU F Y, WEN D Z, XU Q D, et al. Rice field ecosystems in northern China Ⅰ. Structural study of rice-Azolla combination systems[J]. Chinese Journal of Applied Ecology, 1996, 7(2): 179-184 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB602.013.htm |
[21] | WOLLENBERG J L, PETERS S C. Diminished mercury emission from waters with duckweed cover[J]. Journal of Geophysical Research: Biogeosciences, 2009, 114(G2): G00C08 doi: 10.1029/2008JG000770/abstract |
[22] | CHAMARA B S, MARAMB B, CHAUHAN B S. Management of Cleome rutidosperma DC. using high crop density in dry-seeded rice[J]. Crop Protection, 2017, 95: 120-128 doi: 10.1016/j.cropro.2016.08.009 |
[23] | CESCHIN S, SGAMBATO V, ELLWOOD N T W, et al. Phytoremediation performance of Lemna communities in a constructed wetland system for wastewater treatment[J]. Environmental and Experimental Botany, 2019, 162: 67-71 doi: 10.1016/j.envexpbot.2019.02.007 |
[24] | SUMUDUNIE H G S, JAYASURIYA K M G G. Seed dormancy and germination of seven rice field weeds from Sri Lanka[J]. Taiwania, 2019, 64(3): 221-230 http://www.researchgate.net/publication/333972322_Seed_dormancy_and_germination_of_seven_rice_field_weeds_from_Sri_Lanka |
[25] | DERAKHSHAN A, GHEREKHLOO J. Factors affecting Cyperus difformis seed germination and seedling emergence[J]. Planta Daninha, 2013, 31(4): 823-832 doi: 10.1590/S0100-83582013000400008 |
[26] | LI H, LIANG X Q, LIAN Y F, et al. Reduction of ammonia volatilization from urea by a floating duckweed in flooded rice fields[J]. Soil Science Society of America Journal, 2009, 73(6): 1890-1895 doi: 10.2136/sssaj2008.0230 |
[27] | BICH T T N, KATO-NOGUCHI H. Allelopathic potential of two aquatic plants, duckweed (Lemna minor L. ) and water lettuce (Pistia stratiotes L. ), on terrestrial plant species[J]. Aquatic Botany, 2012, 103: 30-36 doi: 10.1016/j.aquabot.2012.05.007 |
[28] | 吴玮, 王俊, 廖燕俸, 等. 闽中地区再生稻田杂草种类及其群落特征[J]. 福建农业学报, 2016, 31(12): 1340-1344 https://www.cnki.com.cn/Article/CJFDTOTAL-FJNX201612015.htm WU W, WANG J, LIAO Y F, et al. Composition and characteristics of weed community in regeneration rice fields in Central Fujian[J]. Fujian Journal of Agricultural Sciences, 2016, 31(12): 1340-1344 https://www.cnki.com.cn/Article/CJFDTOTAL-FJNX201612015.htm |
[29] | 王小武, 李双建, 丁新华, 等. 不同除草方式对稻田杂草群落及其多样性的影响[J]. 西北农业学报, 2018, 27(11): 1667-1675 doi: 10.7606/j.issn.1004-1389.2018.11.015 WANG X W, LI S J, DING X H, et al. Effects of different weed controls on weed communities and diversity in paddy fields[J]. Acta Agriculturae Boreali-Occidentalis Sinica, 2018, 27(11): 1667-1675 doi: 10.7606/j.issn.1004-1389.2018.11.015 |
[30] | 沈建凯, 黄璜, 傅志强, 等. 规模化稻鸭生态种养对稻田杂草群落组成及物种多样性的影响[J]. 中国生态农业学报, 2010, 18(1): 123-128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010124&flag=1 SHEN J K, HUANG H, FU Z Q, et al. Effect of large-scale rice-duck eco-farming on the composition and diversity of weed community in paddy fields[J]. Chinese Journal of Eco-Agriculture, 2010, 18(1): 123-128 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2010124&flag=1 |
[31] | 邱佩, 崔远来, 韩焕豪, 等. 淹灌和间歇灌溉对晚稻田杂草群落多样性的影响[J]. 农业工程学报, 2015, 31(22): 115-121 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201522016.htm QIU P, CUI Y L, HAN H H, et al. Effect of flooding irrigation and intermittent irrigation patterns on weed community diversity in late rice fields[J]. Transactions of the Chinese Society of Agricultural Engineering, 2015, 31(22): 115-121 https://www.cnki.com.cn/Article/CJFDTOTAL-NYGU201522016.htm |
[32] | 中国科学院中国植物志编辑委员会. 中国植物志[M]. 北京: 科学出版社, 1961: 1 Editorial Board of Flora of China, Chinese Academy of Sciences. Flora of China[M]. Beijing: Science Press, 1961: 1 |
[33] | SUN H J, DAN A, FENG Y F, et al. Floating duckweed mitigated ammonia volatilization and increased grain yield and nitrogen use efficiency of rice in biochar amended paddy soils[J]. Chemosphere, 2019, 237: 124532 doi: 10.1016/j.chemosphere.2019.124532 |
[34] | YAO Y L, ZHANG M, TIAN Y H, et al. Duckweed (Spirodela polyrhiza) as green manure for increasing yield and reducing nitrogen loss in rice production[J]. Field Crops Research, 2017, 214: 273-282 doi: 10.1016/j.fcr.2017.09.021 |
[35] | OERKE E C. Crop losses to pests[J]. The Journal of Agricultural Science, 2006, 144(1): 31-43 doi: 10.1017/S0021859605005708 |
[36] | 田昌, 靳拓, 周旋, 等. 控释尿素对环洞庭湖区双季稻吸氮特征和产量的影响[J/OL]. 作物学报, 2020: 1-12. (2020-10-05)[2020-10-08]. http://kns.cnki.net/kcms/detail/11.1809.S.20200930.1634.008.html. TIAN C, JIN T, ZHOU X, et al. Effects of controlled-release urea on nitrogen uptake characteristics and yield of double-cropping rice around Dongting Lake area[J/OL]. Acta Agronomica Sinica, 2020: 1-12. (2020-10-05)[2020-10-08]. http://kns.cnki.net/kcms/detail/11.1809.S.20200930.1634.008.html. |
[37] | 伍龙梅, 李惠芬, 黄庆, 等. 幼穗分化期氮肥用量降低水稻遮光减产效应研究[J]. 广东农业科学, 2019, 46(9): 18-26 https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201909004.htm WU L M, LI H F, HUANG Q, et al. Research of panicle nitrogen fertilizer amount on reducing yield reduction caused by shading at young panicle differentiation stage of rice[J]. Guangdong Agricultural Sciences, 2019, 46(9): 18-26 https://www.cnki.com.cn/Article/CJFDTOTAL-GDNY201909004.htm |
[38] | 李志胜, 黄顶成, 徐敦明, 等. 稻田周围杂草地生境节肢动物群落的物种丰富度、优势度及多样性[J]. 福建农业大学学报: 自然科学版, 2003, 32(4): 425-429 https://www.cnki.com.cn/Article/CJFDTOTAL-FJND200304004.htm LI Z S, HUANG D C, XU D M, et al. Species richness, dominance and diversity of arthropod community in the weed habitat surrounding a rice field[J]. Journal of Fujian Agriculture and Forestry University: Natural Science Edition, 2003, 32(4): 425-429 https://www.cnki.com.cn/Article/CJFDTOTAL-FJND200304004.htm |
[39] | LENKA N K, SATAPATHY K K, LAL R, et al. Weed strip management for minimizing soil erosion and enhancing productivity in the sloping lands of north-eastern India[J]. Soil and Tillage Research, 2017, 170: 104-113 doi: 10.1016/j.still.2017.03.012 |
[40] | BLAIX C, MOONEN A C, DOSTATNY D F, et al. Quantification of regulating ecosystem services provided by weeds in annual cropping systems using a systematic map approach[J]. Weed Research, 2018, 58(3): 151-164 doi: 10.1111/wre.12303 |
[41] | SCHUMACHER M, OHNMACHT S, ROSENSTEIN R, et al. How management factors influence weed communities of cereals, their diversity and endangered weed species in central Europe[J]. Agriculture, 2018, 8(11): 172 doi: 10.3390/agriculture8110172 |