删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

基于FvCB模型的盐胁迫下紫花苜蓿幼苗光合特性的研究

本站小编 Free考研考试/2022-01-01

王文静1,,
麻冬梅1, 4,,,
蔡进军3,
黄婷1,
马巧利2,
赵丽娟1,
张莹2
1.宁夏大学西北土地退化与生态系统恢复省部共建国家重点实验室培育基地/西北退化生态系统恢复与重建教育部重点实验室 银川 750021
2.宁夏大学农学院 银川 750021
3.宁夏农林科学院农业资源与环境研究所 银川 750021
4.宁夏优势特色作物现代分子育种重点实验室 银川 750021
基金项目: 国家自然科学基金项目31760698
宁夏农业育种专项2019NYYZ0401
宁夏重点研发项目2019BBF02022-04
宁夏高等学校一流学科建设(生态学)项目NXYLXK2017B06

详细信息
作者简介:王文静, 主要研究方向为牧草分子育种。E-mail: 1961224619@qq.com
通讯作者:麻冬梅, 主要研究方向为牧草分子育种。E-mail: 576494584@qq.com
中图分类号:Q948.1

计量

文章访问数:189
HTML全文浏览量:11
PDF下载量:769
被引次数:0
出版历程

收稿日期:2020-06-25
录用日期:2020-10-16
刊出日期:2021-03-01

Photosynthetic characteristics of alfalfa seedlings under salt stress based on FvCB model

WANG Wenjing1,,
MA Dongmei1, 4,,,
CAI Jinjun3,
HUANG Ting1,
MA Qiaoli2,
ZHAO Lijuan1,
ZHANG Ying2
1. Breeding Base for State Key Laboratory of Land Degradation and Ecosystem Restoration in Northwest China, Ningxia University/Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwest China of Ministry of Education, Yinchuan 750021, China
2. College of Agriculture, Ningxia University, Yinchuan 750021, China
3. Institute of Agricultural Resources and Environment, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan 750021, China
4. Key Laboratory of Modern Molecular Breeding for Dominant Characteristic Crops in Ningxia, Yinchuan 750021, China
Funds: the National Natural Science Foundation of China31760698
the Ningxia Special Program of Agricultural Breeding2019NYYZ0401
the Ningxia Key Research and Development Program2019BBF02022-04
the First Class Discipline Construction in Ningxia Universities (Ecology)NXYLXK2017B06

More Information
Corresponding author:MA Dongmei, E-mail: 576494584@qq.com


摘要
HTML全文
(5)(1)
参考文献(35)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:探讨盐胁迫下紫花苜蓿幼苗叶片光合生理特性,可为改善紫花苜蓿生长,修复生态环境,推动牧草产业快速发展奠定基础。本研究以‘阿迪娜’为试验材料,设0 mmol·L-1(CK)、40 mmol·L-1、80 mmol·L-1、120 mmol·L-1和160 mmol·L-1共5个NaCl水平,使用Li-6400XT光合仪测定不同盐胁迫下紫花苜蓿幼苗光响应-CO2曲线,利用FvCB模型分析盐胁迫对紫花苜蓿幼苗光合特性的影响。结果表明:1)不同NaCl胁迫下叶片净光合速率(Pn)随NaCl浓度的增加而降低,与CK相比,4个NaCl胁迫下分别降低1.44%、3.85%、7.21%和7.90%,均达显著性水平(P < 0.05);随光合有效辐射的增加均呈迅速上升趋势,CK的Pn增长速度显著高于其他处理。2)与CK相比,40 mmol·L-1和80 mmol·L-1 NaCl胁迫增加了紫花苜蓿幼苗叶片的最大羧化速率(Vcmax)和最大电子传递速率(Jmax),但120 mmol·L-1和160 mmol·L-1NaCl胁迫显著降低了VcmaxJmax。3)叶肉导度(gm)和暗呼吸速率(Rd)随NaCl胁迫水平的增加呈降低趋势;与CK相比,40 mmol·L-1和80 mmol·L-1 NaCl胁迫的gm变化不显著,但Rd显著降低。120 mmol·L-1和160 mmol·L-1 NaCl胁迫显著降低了gmRd,且与CK、40 mmol·L-1和80 mmol·L-1 NaCl胁迫间呈显著性差异。4)验证FvCB模型中子模型估算植物叶片光合的精确度,发现FvCB模型对不同胁迫处理下Pn拟合时,引入gm模型模拟精度高,平均绝对误差低。5)紫花苜蓿幼苗耐盐临界值为80~120 mmol·L-1,随NaCl浓度的增加,光合限制因素由叶肉因素转变为光合机构受损。该研究可为我国西北地区盐碱地制定有效的调控措施以提高植物耐盐能力提供科学参考。
关键词:紫花苜蓿/
盐胁迫/
FvCB模型/
最大羧化速率/
最大电子传递速率
Abstract:Understanding the photosynthetic physiological characteristics of alfalfa seedlings under salt stress is important for improving alfalfa growth, restoring the ecological environment, and promoting the development of the foraging industry in China. Alfalfa variety 'Adrenalin' seedlings were treated with different concentrations of NaCl (0 mmol·L-1, CK; 40 mmol·L-1, T1; 80 mmol·L-1, T2; 120 mmol·L-1, T3; and 160 mmol·L-1, T4), the light response curves were measured with Li-6400XT, and the effects of NaCl stress on photosynthetic characteristics were analyzed by using FvCB model. The results showed that the leaf net photosynthetic rate (Pn) decreased significantly with increasing NaCl concentration by 1.44% (T1), 7.21% (T2), 7.90% (T3), and 3.85% (T4), respectively, compared with that of CK. The Pn in all treatments showed a rapid upward trend as photosynthetic effective radiation increased, and the Pn growth rate in the normal treatment (CK) was significantly higher than that in the other treatments. Compared with those in the CK, the T1 and T2 treatments increased the alfalfa seedling leaf maximum carboxylation rate (Vcmax; by 3.59% in T1, and 13.88% in T2) and maximum electron transfer rate (Jmax; by 11.24% in T1, and 17.47% in T2), but the T3 and T4 treatments reduced Vcmax and Jmax. Leaf conductance (gm) and dark respiration rate (Rd) decreased with increasing NaCl concentration. Compared with those in the CK, the T1 and T2 treatments did not affect gm, but significantly reduced Rd. The T3 and T4 treatments significantly reduced gm and Rd compared with CK, T1, and T2 treatments. The FvCB model fitting results of alfalfa Pn under different stress treatments verified that the FvCB sub-model accurately estimated plant leaf photosynthesis, and the results showed that introducing gm into the model had a high simulation accuracy and low average absolute error. The critical salt tolerance value for alfalfa seedlings was 80–120 mmol·L-1. As the NaCl concentration increased, the photosynthetic limiting factors changed from mesophyll factors to damaged photosynthetic organs. These results may help formulate effective control measures in Northwest China saline land to improve plant salt tolerance.
Key words:Alfalfa/
Salt stress/
FvCB model/
Maximum carboxylation rate/
Maximum electron transport rate

HTML全文


图1盐胁迫对紫花苜蓿幼苗叶片净光合速率的影响
不同小写字母表示不同NaCl浓度间差异显著(P < 0.05)。
Figure1.Effect of salt stress on leaves net photosynthetic rate of alfalfa seedlings
Different lowercase letters mean significant differences among NaCl concentrations at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2不同盐浓度处理下紫花苜蓿幼苗叶片光响应曲线变化
Figure2.Leaves light response curves of alfalfa seedling under different salt concentrations
CK: 0 mmol·L?1 NaCl; T1: 40 mmol·L?1 NaCl; T2: 80 mmol·L?1 NaCl; T3: 120 mmol·L?1 NaCl; T4: 160 mmol·L?1 NaCl


下载: 全尺寸图片幻灯片


图3盐胁迫对紫花苜蓿叶片光合最大羧化速率(Vcmax)和最大电子传递速率(Jmax)的影响
Vcmax25Jmax25为推算的25 ℃最大羧化速率和最大电子传递速率。
Figure3.Effects of salt stress on photosynthetic maximum carboxylation rate (Vcmax) and maximum electron transfer rate (Jmax) of alfalfa leaves
Vcmax25 and Jmax25 are calculated photosynthetic maximum carboxylation rate and maximum electron transfer rate at 25 ℃.


下载: 全尺寸图片幻灯片


图4盐胁迫对紫花苜蓿叶片叶肉导度和暗呼吸速率的影响
不同小写字母表示不同NaCl浓度间差异显著(P < 0.05)。
Figure4.Effects of salt stress on leaf conductance and dark respiration rate of alfalfa leaves
Different lowercase letters mean significant differences among NaCl concentrations at P < 0.05 level.


下载: 全尺寸图片幻灯片


图5FvCB模型预测的净光合速率和实际净光合速率的关系
P1: 引入叶肉导度(gm)推算的净光合速率; P2: 忽略gm推算的净光合速率; R2: 决定系数; MAE: 平均绝对误差。
Figure5.Relationship between predicted net photosynthetic rate by FvCB model and actual net photosynthetic rate
P1: the net photosynthetic rate involving leaf conductance (gm); P2: the net photosynthetic rate ignoring gm; R2: determination coefficient; MAE: mean absolute error.


下载: 全尺寸图片幻灯片

表1FvCB模型参数及范围
Table1.Parameters and prior ranges of the FvCB model
参数
Parameter
范围
Range
单位
Unit
描述
Description
参考文献
Reference
Jmax25 (30.3, 200) mmol·m?2·s?1 25 ℃时最大电子传递速率Maximum electron transfer rate at 25 ℃ [20-21]
Vmax25 (24.3, 200) mmol·m?2·s?1 25 ℃时最大羧化速率Maximum carboxylation rate at 25 ℃ [20-21]
Rd25 (0.01, 10) mmol·m?2·s?1 25 ℃时暗呼吸速率Dark respiration rate at 25 ℃ [22-23]
gm25 (0.03, 10) mmol·m?2·s?1 25 ℃时叶肉导度Leaf conductivity at 25 ℃ [22-23]


下载: 导出CSV

参考文献(35)
[1]董世德, 万书勤, 康跃虎, 等. 低洼盐渍区滴灌不同土壤水基质势对土壤盐分及速生杨生长的影响[J]. 水土保持学报, 2017, 31(1): 236-242 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201701039.htm
DONG S D, WAN S Q, KANG Y H, et al. Effect of different soil matric potentials on distribution of soil salt and growth of poplar (Populus) by drip irrigation in low-lying saline area[J]. Journal of Soil and Water Conservation, 2017, 31(1): 236-242 https://www.cnki.com.cn/Article/CJFDTOTAL-TRQS201701039.htm
[2]DíAZ F J, GRATTAN S R, REYES J A, et al. Using saline soil and marginal quality water to produce alfalfa in arid climates[J]. Agricultural Water Management, 2018, 199: 11-21 doi: 10.1016/j.agwat.2017.12.003
[3]FERREIRA J F S, CORNACCHIONE M V, LIU X, et al. Nutrient composition, forage parameters, and antioxidant capacity of alfalfa (Medicago sativa, L. ) in response to saline irrigation water[J]. Agriculture, 2015, 5(3): 577-597 http://www.researchgate.net/publication/280721915_Nutrient_Composition_Forage_Parameters_and_Antioxidant_Capacity_of_Alfalfa_Medicago_sativa_L_in_Response_to_Saline_Irrigation_Water
[4]杨淑萍, 危常州, 梁永超. 盐胁迫对不同基因型海岛棉光合作用及荧光特性的影响[J]. 中国农业科学, 2010, 43(8): 1585-1593 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201008008.htm
YANG S P, WEI C Z, LIANG Y C. Effects of NaCl stress on the characteristics of photosynthesis and chlorophyll fluorescence at seedlings stage in different sea island cotton genotypes[J]. Scientia Agricultura Sinica, 2010, 43(8): 1585-1593 https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201008008.htm
[5]SHAHEEN S, NASEER S, ASHRAF M, et al. Salt stress affects water relations, photosynthesis, and oxidative defense mechanisms in Solanum melongena L. [J]. Journal of Plant Interactions, 2013, 8(1): 85-96 doi: 10.1080/17429145.2012.718376
[6]吴统贵, 周和锋, 吴明, 等. 旱柳光合作用动态及其与环境因子的关系[J]. 生态学杂志, 2008, 27(12): 2056-2061 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200812005.htm
WU T G, ZHOU H F, WU M, et al. Dynamics of Salix matsudana photosynthesis and its relations to environmental factors[J]. Chinese Journal of Ecology, 2008, 27(12): 2056-2061 https://www.cnki.com.cn/Article/CJFDTOTAL-STXZ200812005.htm
[7]高志奎, 高荣孚, 何俊萍, 等. 温室茄子(Solanum melongena L. )光合数学模型与光合生化模型模拟分析[J]. 生态学报, 2007, 27(6): 2265-2271 doi: 10.3321/j.issn:1000-0933.2007.06.015
GAO Z K, GAO R F, HE J P, et al. Analysis of photosynthetic simulation by a biochemical model or mathematical model in greenhouse eggplant[J]. Acta Ecologica Sinica, 2007, 27(6): 2265-2271 doi: 10.3321/j.issn:1000-0933.2007.06.015
[8]FARQUHAR G D, SHARKEY TD. Stomatal conductance and photosynthesis[J]. Annual Review of Plant Physiology, 1982, 33: 317-345 doi: 10.1146/annurev.pp.33.060182.001533
[9]唐星林, 曹永慧, 顾连宏, 等. 基于FvCB模型的叶片光合生理对环境因子的响应研究进展[J]. 生态学报, 2017, 37(19): 6633-6645 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201719036.htm
TANG X L, CAO Y H, GU L H, et al. Advances in photo-physiological responses of leaves to environmental factors based on the FvCB model[J]. Acta Ecologica Sinica, 2017, 37(19): 6633-6645 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201719036.htm
[10]唐星林, 周本智, 周燕, 等. 基于FvCB模型的几种草本和木本植物光合生理生化特性[J]. 应用生态学报, 2017, 28(5): 1482-1488 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201705010.htm
TANG X L, ZHOU B Z, ZHOU Y, et al. Photo-physiological and photo-biochemical characteristics of several herbaceous and woody species based on FvCB model[J]. Chinese Journal of Applied Ecology, 2017, 28(5): 1482-1488 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201705010.htm
[11]梁星云, 刘世荣. 基于冠层塔吊原位测定长白山温带阔叶红松原始林群落主要树种的光合特征[J]. 应用生态学报, 2019, 30(5): 1494-1502 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201905011.htm
LIANG X Y, LIU S R. In-situ measurement of photosynthetic characteristics of dominant tree species based on canopy crane in a Korean pine broad-leaved forest in Changbai Mountain, northeastern China[J]. Chinese Journal of Applied Ecology, 2019, 30(5): 1494-1502 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201905011.htm
[12]康华靖, 段世华, 安婷, 等. 基于FvCB模型估算小麦的最大电子传递速率[J]. 麦类作物学报, 2019, 39(11): 1377-1384 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201911015.htm
KANG H J, DUAN S H, AN T, et al. Estimation of maximum electron transport rate of wheat based on FvCB model[J]. Journal of Triticeae Crops, 2019, 39(11): 1377-1384 https://www.cnki.com.cn/Article/CJFDTOTAL-MLZW201911015.htm
[13]HAN T, ZHU G F, MA J Z, et al. Sensitivity analysis and estimation using a hierarchical Bayesian method for the parameters of the FvCB biochemical photosynthetic model[J]. Photosynthesis Research, 2020, 143(1): 45-66 doi: 10.1007/s11120-019-00684-z
[14]张彦敏, 周广胜. 植物叶片最大羧化速率及其对环境因子响应的研究进展[J]. 生态学报, 2012, 32(18): 5907-5917 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201218034.htm
ZHANG Y M, ZHOU G S. Advances in leaf maximum carboxylation rate and its response to environmental factors[J]. Acta Ecologica Sinica, 2012, 32(18): 5907-5917 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB201218034.htm
[15]梁星云, 刘世荣. FvCB生物化学光合模型及A-Ci曲线测定[J]. 植物生态学报, 2017, 41(6): 693-706 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201706010.htm
LIANG X Y, LIU S R. A review on the FvCB biochemical model of photosynthesis and the measurement of A-Ci curves[J]. Chinese Journal of Plant Ecology, 2017, 41(6): 693-706 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201706010.htm
[16]MARTINS S C V, GALMéS J, MOLINS A, et al. Improving the estimation of mesophyll conductance to CO2: On the role of electron transport rate correction and respiration[J]. Journal of Experimental Botany, 2013, 64(11): 3285-3298 doi: 10.1093/jxb/ert168
[17]BERNACCHI C J, SINGSAAS E L, PIMENTEL C, et al. Improved temperature response functions for models of rubisco-limited photosynthesis[J]. Plant, Cell & Environment, 2001, 24(2): 253-259 http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_JJ0212021422
[18]BERNACCHI CJ, PORTIS A R, NAKANO H, et al. Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo[J]. Plant Physiology, 2002, 130(4): 1992-1998 doi: 10.1104/pp.008250
[19]LLOYD J, SYVERTSEN J P, KRIEDEMANN P E, et al. Low conductances for CO2 diffusion from stomata to the sites of carboxylation in leaves of woody species[J]. Plant, Cell & Environment, 1992, 15(8): 873-899 doi: 10.1111/j.1365-3040.1992.tb01021.x
[20]MEDLYN B E, DREYER E, ELLSWORTH D, et al. Temperature response of parameters of a biochemically based model of photosynthesis. Ⅱ. A review of experimental data[J]. Plant, Cell & Environment, 2002, 25(9): 1167-1179 http://aobpla.oxfordjournals.org/external-ref?access_num=10.1046/j.1365-3040.2002.00891.x&link_type=DOI
[21]PATRICK L D, OGLE K, TISSUE D T. A hierarchical Bayesian approach for estimation of photosynthetic parameters of C3 plants[J]. Plant, Cell & Environment, 2009, 32(12): 1695-1709 http://treephys.oxfordjournals.org/external-ref?access_num=19671098&link_type=MED
[22]SHARKEY T D, BERNACCHI C J, FARQUHAR G D, et al. Fitting photosynthetic carbon dioxide response curves for C3 leaves[J]. Plant, Cell & Environment, 2007, 30(9): 1035-1040 http://www.europepmc.org/abstract/MED/17661745
[23]SU Y H, ZHU G F, MIAO Z W, et al. Estimation of parameters of a biochemically based model of photosynthesis using a genetic algorithm[J]. Plant, Cell & Environment, 2009, 32(12): 1710-1723 http://www.ncbi.nlm.nih.gov/pubmed/19703116
[24]房朋, 任丽丽, 张立涛, 等. 盐胁迫对杂交酸模叶片光合活性的抑制作用[J]. 应用生态学报, 2008, 19(10): 2137-2142 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200810007.htm
FANG P, REN L L, ZHANG L T, et al. Inhibition effects of salt stress on photosynthetic activity of Rumex K-1[J]. Chinese Journal of Applied Ecology, 2008, 19(10): 2137-2142 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200810007.htm
[25]张会慧, 张秀丽, 李鑫, 等. NaCl和Na2CO3胁迫对桑树幼苗生长和光合特性的影响[J]. 应用生态学报, 2012, 23(3): 625-631 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201203007.htm
ZHANG H H, ZHANG X L, LI X, et al. Effects of NaCl and Na2CO3 stresses on the growth and photosynthesis characteristics of Morus alba seedlings[J]. Chinese Journal of Applied Ecology, 2012, 23(3): 625-631 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201203007.htm
[26]罗达, 史彦江, 宋锋惠, 等. 盐胁迫对平欧杂种榛幼苗生长、光合荧光特性及根系构型的影响[J]. 应用生态学报, 2019, 30(10): 3376-3384 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201910012.htm
LUO D, SHI Y J, SONG F H, et al. Effects of salt stress on growth, photosynthetic and fluorescence characteristics, and root architecture of Corylus heterophylla ×C. avellan seedlings[J]. Chinese Journal of Applied Ecology, 2019, 30(10): 3376-3384 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201910012.htm
[27]江晓慧, 高阳, 王广帅, 等. 基于FvCB模型分析盐分胁迫对棉花叶片光合作用的影响[J]. 应用生态学报, 2020, 31(5): 1653-1659 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202005028.htm
JIANG X H, GAO Y, WANG G S, et al. Examining effects of salt stress on leaf photosynthesis of cotton based on the FvCB model[J]. Chinese Journal of Applied Ecology, 2020, 31(5): 1653-1659 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202005028.htm
[28]王庆惠, 杨嘉鹏, 向光荣, 等. 盐胁迫对不同基因型棉花苗期光合特性和养分吸收的影响[J]. 中国农业科技导报, 2018, 20(5): 9-15 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201805002.htm
WANG Q H, YANG J P, XIANG G R, et al. Effects of salt stress on root morphology and physiological characteristics of potted cotton at seedling stage[J]. Journal of Agricultural Science and Technology, 2018, 20(5): 9-15 https://www.cnki.com.cn/Article/CJFDTOTAL-NKDB201805002.htm
[29]孙璐, 周宇飞, 李丰先, 等. 盐胁迫对高粱幼苗光合作用和荧光特性的影响[J]. 中国农业科学, 2012, 45(16): 3265-3272 doi: 10.3864/j.issn.0578-1752.2012.16.005
SUN L, ZHOU Y F, LI F X, et al. Impacts of salt stress on characteristics of photosynthesis and chlorophyll fluorescence of sorghum seedlings[J]. Scientia Agricultura Sinica, 2012, 45(16): 3265-3272 doi: 10.3864/j.issn.0578-1752.2012.16.005
[30]边甜甜, 颜坤, 韩广轩, 等. 盐胁迫下菊芋根系脱落酸对钠离子转运和光系统Ⅱ的影响[J]. 应用生态学报, 2020, 31(2): 508-514 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202002020.htm
BIAN T T, YAN K, HAN G X, et al. Effects of root abscisic acid on Na+ transport and photosystem Ⅱ in Helianthus tuberosus under salt stress[J]. Chinese Journal of Applied Ecology, 2020, 31(2): 508-514 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB202002020.htm
[31]ATKIN O K, BLOOMFIELD K J, REICH P B, et al. Global variability in leaf respiration in relation to climate, plant functional types and leaf traits[J]. New Phytologist, 2015, 206(2): 614-636 doi: 10.1111/nph.13253
[32]Flexas J, Ribas-Carbo M, Diaz-Espejo A, et al. Mesophyll conductance to CO2: Current knowledge and future prospects[J]. Plant, Cell & Environment, 2008, 31(5): 602-612 http://jxb.oxfordjournals.org/external-ref?access_num=10.1111/j.1365-3040.2007.01757.x&link_type=DOI
[33]GALMéS J, MEDRANO H, FLEXAS J. Acclimation of Rubisco specificity factor to drought in tobacco: Discrepancies between in vitro and in vivo estimations[J]. Journal of Experimental Botany, 2006, 57(14): 3659-3667 doi: 10.1093/jxb/erl113
[34]韩吉梅, 张旺锋, 熊栋梁, 等. 植物光合作用叶肉导度及主要限制因素研究进展[J]. 植物生态学报, 2017, 41(8): 914-924 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201708009.htm
HAN J M, ZHANG W F, XIONG D L, et al. Mesophyll conductance and its limiting factors in plant leaves[J]. Chinese Journal of Plant Ecology, 2017, 41(8): 914-924 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWSB201708009.htm
[35]宁建凤, 郑青松, 杨少海, 等. 高盐胁迫对罗布麻生长及离子平衡的影响[J]. 应用生态学报, 2010, 21(2): 325-330 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002011.htm
NING J F, ZHENG Q S, YANG S H, et al. Impact of high salt stress on Apocynum venetum growth and ionic homeostasis[J]. Chinese Journal of Applied Ecology, 2010, 21(2): 325-330 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB201002011.htm

相关话题/生态 电子 植物 宁夏 图片