删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

垄作稻-鱼-鸡共生对水稻茎秆倒伏、穗部性状及产量的影响

本站小编 Free考研考试/2022-01-01

梁玉刚1, 2,,
陈奕沙3,
陈璐1,
马微微1,
孟祥杰1,
黄璜1, 2,,,
余政军1, 2,,
1.湖南农业大学农学院 长沙 410128
2.农业农村部华中地区作物栽培科学观测试验站/湖南省稻田生态种养工程技术 研究中心 长沙 410128
3.湖南农业大学经济学院 长沙 410128
基金项目: 湘北水稻生态优质技术集成与示范2018YFD0301003
湖南省教育厅科学研究项目18C0132

详细信息
作者简介:梁玉刚, 主要研究方向为水稻高产高效生态栽培理论与技术研究。E-mail: 1563224194@qq.com
通讯作者:黄璜, 主要研究方向为农业生态信息, E-mail: hh863@126.com
余政军, 主要研究方向为水稻高产高效生态栽培理论与技术研究, E-mail: yuzhengjunkk@163.com
中图分类号:S27

计量

文章访问数:213
HTML全文浏览量:31
PDF下载量:96
被引次数:0
出版历程

收稿日期:2020-06-19
录用日期:2020-08-24
刊出日期:2021-02-01

Effect of rice-fish-chicken ridge cultivation on stem lodging resistance, panicle traits, and yield of rice

LIANG Yugang1, 2,,
CHEN Yisha3,
CHEN Lu1,
MA Weiwei1,
MENG Xiangjie1,
HUANG Huang1, 2,,,
YU Zhengjun1, 2,,
1. College of Agronomy, Hunan Agricultural University, Changsha 410128, China
2. Observation Station of Crop Cultivation Science in Central China, Ministry of Agriculture and Rural Affairs/Hunan Rice Field Ecological Breeding Engineering Technology Research Center, Changsha 410128, China
3. College of Economics, Hunan Agricultural University, Changsha 410128, China
Funds: the Technology Integration and Demonstration Project of Ecological and High-Quality Rice Production in Northern Hunan2018YFD0301003
the Scientific Research Project of Hunan Education Department18C0132

More Information
Corresponding author:HUANG Huang, E-mail: hh863@126.com;YU Zhengjun, E-mail: yuzhengjunkk@163.com


摘要
HTML全文
(2)(4)
参考文献(37)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为了探究水稻垄作栽培和稻-鱼-鸡共生模式的结合对水稻茎秆倒伏、穗部性状及产量的影响,本文通过设计常规水稻垄作栽培(CK)、水稻垄作养鱼(RF)、水稻垄作养鸡(RC)和水稻垄作养鸡养鱼(RFC)的田间对比试验,研究垄作稻-鱼-鸡共生模式下水稻茎秆倒伏、穗部性状和实际产量的变化。结果表明:2年中4个处理的水稻株高、株鲜重、重心高度和节间长的均值整体无显著性差异。与CK处理相比,RFC和RC处理水稻茎秆节间外径、节间壁厚、穗长和穗鲜重虽呈增加趋势,但均值整体也无显著性差异;水稻产量也保持稳定。RF处理水稻茎秆节间外径、壁厚、穗长和穗鲜重均呈降低趋势,且2019年穗鲜重达显著降低(P < 0.05);水稻产量2年平均降低为29.98%(P < 0.05),其余均值整体无显著性差异。2年中RFC和RC较CK处理水稻节间茎秆抗折力平均增加19.69%和8.10%,且2年中RFC的第4和第5节间茎秆抗折力显著增加(P < 0.05);而RF处理茎秆抗弯截面模量和抗折力整体均呈降低趋势,但均值整体变化不显著。RFC和RC较CK处理水稻茎秆节间最大应力均值降低为17.85%和15.08%,倒伏指数均值降低为4.35%和4.26%,但未达显著水平;RF处理茎秆节间倒伏指数平均增加11.47%,且2018年第3和2019年第2~5节间均达显著性差异(P < 0.05)。综上所述,垄作稻-鱼-鸡共生和垄作稻-鸡共生模式能够提高水稻穗长和穗鲜重,稳定水稻产量,增加水稻茎秆节间外径和壁厚,提高茎秆抗折力和抗弯截面模量,降低茎秆最大应力和倒伏指数,从而具有一定的壮秆效应和抗倒伏能力。
关键词:垄作栽培/
稻-鱼-鸡共生/
茎秆外径/
茎秆抗折力/
倒伏指数/
穗长
Abstract:Based on previous studies of ridge cultivation, rice-fish co-culture, and rice-chicken co-culture, we proposed an integrated technology of ridge cultivation of rice combined with fish and chicken co-culture (RFC), and observed its' obvious yield and economic benefits. The objective of this study was to determine the effects of RFC on stem lodging resistance, panicle traits, and grain yield in rice. Field experiments were conducted in 2018 and 2019 to compare the stem lodging resistance characteristics, panicle traits, and rice yield when grown under conventional ridge cultivation (CK), ridge cultivation of rice-fish co-culture (RF), ridge cultivation of rice-chicken co-culture (RC), and RFC. The results showed that the height, fresh weight, gravity center height, and internode length of rice plants differed among the treatments in both years, but the differences were not significant. RFC and RC had higher internode outer diameters and wall thicknesses, panicle lengths, and panicle fresh weights than CK, but the differences were not significant. RFC and RC produced similar rice yields as CK. RF had a lower internode outer diameter and wall thickness, panicle length, and panicle fresh weight than CK, but the differences were not significant except for the panicle fresh weight in 2019 (P < 0.05). RF produced a significantly higher grain yield than CK in both years (P < 0.05), with an average increase of 29.98%. RFC and RC had higher average stem-breaking resistances than CK by 19.69% and 8.10% in 2018 and 2019, respectively. In particular, the difference in stem-breaking resistance between RFC and CK was significant for the fourth and fifth internodes (P < 0.05). RF had a smaller stem cross-section modulus and lower stem-breaking resistance than CK, but the differences were not significant. RFC and RC had lower average maximum bending stress by 17.85% and 15.08%, respectively, and a lower average lodging index by 4.35% and 4.26%, respectively, than CK in 2018 and 2019, respectively, but the differences were not significant. RF had a higher average internode lodging index than CK by 11.47%, and the differences were significant for the third internode in 2018 and the second to the fifth internodes in 2019. In conclusion, RFC and RC increased the panicle length and panicle fresh weight of rice plants, stabilized the rice yield, increased the stem internode diameter and wall thickness, enhanced the stem-breaking resistance and cross-section modulus, and reduced the stem maximum bending stress and lodging index. Our study suggests that RFC and RC are preferable for developing strong stems and improving rice lodging resistance.
Key words:Ridge cultivation/
Rice-fish-chicken co-cultivation/
Stalk outer diameter/
Stalk breaking-resistance strength/
Lodging index/
Ear length

HTML全文


图1垄作稻-鱼-鸡共生示意图
Figure1.Diagram of ridge cultivation of rice combined with fish and chicken co-culture


下载: 全尺寸图片幻灯片


图22018年和2019年不同栽培模式对水稻穗长、穗鲜重和实际产量的影响
RFC、RC、RF和CK分别表示水稻垄作养鸡养鱼、水稻垄作养鸡、水稻垄作养鱼和水稻垄作栽培处理; 数据后不同小写字母表示不同处理之间在P<0.05水平差异显著。
Figure2.Effects of cultivation modes on panicle length, flesh panicle weight and actual yield of rice in 2018 and 2019
RFC, RC, RF and CK represent ridge cultivation of rice combined with fish and chicken co-culture, ridge cultivation of rice-chicken co-culture, ridge cultivation of rice-fish co-culture and rice ridge cultivation. Different lowercase letters after data indicate significant differences among different treatments at P<0.05.


下载: 全尺寸图片幻灯片

表12018年和2019年不同栽培模式对水稻株高、重心高度和株鲜重的影响
Table1.Effect of cultivation modes on height, gravity center height and flesh weight of rice in 2018 and 2019
处理Treatment20182019
株高Plant height (cm)重心高度Gravity center height (cm)株鲜重Fresh weight (g?plant?1)株高Plant height (cm)重心高度Gravity center height (cm)株鲜重Fresh weight (g?plant?1)
RFC148.65±2.11a54.58±1.23a30.46±1.59a149.75±0.12a54.59±1.61a28.05±1.01a
RC146.14±1.54a55.37±0.30a26.67±1.27b149.75±3.75a53.53±1.31a26.92±1.51a
RF148.17±2.32a55.08±0.90a27.27±1.53b148.98±4.05a54.43±2.94a26.30±1.18a
CK149.06±1.93a55.30±0.69a27.86±1.64b146.50±3.14a54.38±0.27a26.30±1.80a
RFC、RC、RF和CK分别表示水稻垄作养鸡养鱼、水稻垄作养鸡、水稻垄作养鱼和水稻垄作栽培处理; 同列数据后不同小写字母表示不同处理间在P < 0.05水平差异显著。RFC, RC, RF and CK represent ridge cultivation of rice combined with fish and chicken co-culture, ridge cultivation of rice-chicken co-culture, ridge cultivation of rice-fish co-culture and rice ridge cultivation. Different lowercase letters in the same column after data indicate significant differences among different treatments at P < 0.05 level.


下载: 导出CSV
表22018年和2019年不同栽培模式对水稻不同节间茎秆性状的影响
Table2.Effect of cultivation modes on characters of different internodes of rice stem in 2018 and 2019 ?cm
指标
Indicator
年份
Year
处理
Treatment
第1节间
First internode
第2节间
Second internode
第3节间
Third internode
第4节间
Fourth internode
第5节间
Fifth internode
节间长
Internode length
2018RFC6.36±0.91a10.20±1.52a13.47±0.88a21.26±1.91b52.91±1.17a
RC7.16±0.71a11.32±0.71a14.50±0.83a24.52±1.50ab51.91±0.83a
RF6.35±0.39a11.07±0.66a14.16±0.58a22.92±0.19ab50.31±3.06a
CK6.72±1.62a11.67±0.72a14.17±1.10a24.94±2.47a48.00±5.35a
2019RFC6.62±0.46a11.88±0.21a14.07±0.30a23.64±0.36a52.61±0.82ab
RC6.99±0.37a11.47±0.64a14.10±0.46a23.48±0.62a51.98±0.46ab
RF6.22±0.56a11.49±0.71a13.95±1.08a21.95±1.15a53.29±1.17a
CK6.80±0.80a11.08±0.21a14.01±0.86a23.88±1.28a50.92±1.18b
茎秆外径
Stem outer diameter
2018RFC1.14±0.01a1.13±0.07a1.07±0.04a0.96±0.06a0.70±0.02a
RC1.11±0.06ab1.08±0.05ab0.99±0.03b0.84±0.03b0.60±0.03b
RF0.98±0.04c0.98±0.05c0.92±0.03b0.81±0.06b0.59±0.01b
CK1.06±0.07b1.03±0.03bc0.94±0.05b0.82±0.06b0.60±0.04b
2019RFC1.11±0.02a1.06±0.03a1.03±0.01a0.93±0.01a0.65±0.02a
RC1.09±0.02a1.07±0.05a0.98±0.01b0.91±0.04a0.65±0.01a
RF0.99±0.05b1.00±0.04a0.96±0.03b0.86±0.06a0.63±0.03ab
CK1.00±0.06b1.01±0.04a0.95±0.02b0.86±0.07a0.59±0.04b
茎秆壁厚
Stem wall thickness
2018RFC0.34±0.02a0.29±0.04a0.33±0.03a0.29±0.03a0.22±0.02a
RC0.31±0.03ab0.27±0.04a0.29±0.02b0.26±0.01b0.19±0.01ab
RF0.25±0.01b0.23±0.02a0.26±0.01b0.23±0.01b0.18±0.01b
CK0.33±0.05a0.27±0.02a0.27±0.01b0.26±0.01b0.19±0.02b
2019RFC0.32±0.02a0.29±0.00ab0.30±0.02a0.27±0.02a0.20±0.01a
RC0.31±0.01a0.31±0.02a0.28±0.01ab0.26±0.02ab0.21±0.01a
RF0.28±0.01a0.28±0.01b0.26±0.01b0.24±0.01b0.19±0.02a
CK0.29±0.03a0.29±0.01ab0.29±0.01ab0.25±0.01ab0.19±0.03a
RFC、RC、RF和CK分别表示水稻垄作养鸡养鱼、水稻垄作养鸡、水稻垄作养鱼和水稻垄作栽培处理; 节间排序为从下向上。数据后不同小写字母表示不同处理之间在P < 0.05水平差异显著。RFC, RC, RF and CK represent ridge cultivation of rice combined with fish and chicken co-culture, ridge cultivation of rice-chicken co-culture, ridge cultivation of rice-fish co-culture and rice ridge cultivation. The internodes are ranked upward from the base. Different lowercase letters after data indicate significant differences among different treatments at P < 0.05.


下载: 导出CSV
表32018年和2019年不同栽培模式对水稻不同节间茎秆内外径比、抗弯截面模量和弯曲力矩的影响
Table3.Effect of cultivation modes on ratios of inner diameter to outer diameter, flexural section modulus and bending moments of different internodes of rice stem in 2018 and 2019
指标
Indicator
年份
Year
处理
Treatment
第1节间
First internode
第2节间
Second internode
第3节间
Third internode
第4节间
Fourth internode
第5节间
Fifth internode
内外径比
Ratio of inner diameter to outer diameter
2018RFC0.703±0.014ab0.746±0.020a0.694±0.021a0.696±0.025a0.689±0.012a
RC0.721±0.019ab0.753±0.029a0.709±0.013a0.689±0.017a0.679±0.008a
RF0.694±0.026b0.738±0.023a0.709±0.008a0.677±0.014a0.687±0.004a
CK0.741±0.014a0.760±0.013a0.720±0.007a0.709±0.003a0.696±0.016a
2019RFC0.712±0.025a0.724±0.011a0.703±0.024a0.709±0.020a0.686±0.005a
RC0.717±0.001a0.713±0.012a0.714±0.006a0.710±0.013a0.676±0.015a
RF0.708±0.012a0.709±0.017a0.699±0.009a0.703±0.007a0.676±0.031a
CK0.719±0.004a0.721±0.014a0.727±0.014a0.724±0.012a0.689±0.014a
抗弯截面模量
Flexural section (cm3)
2018RFC0.111±0.004a0.098±0.021a0.092±0.012a0.068±0.013a0.026±0.003a
RC0.099±0.016a0.084±0.017ab0.071±0.007b0.045±0.003b0.017±0.003b
RF0.065±0.006b0.061±0.011b0.056±0.005b0.038±0.005b0.015±0.001b
CK0.092±0.021a0.076±0.005ab0.061±0.009b0.043±0.008b0.016±0.004b
2019RFC0.100±0.003a0.086±0.006ab0.080±0.002a0.059±0.005a0.021±0.002a
RC0.095±0.005a0.090±0.014a0.068±0.004b0.055±0.008a0.022±0.001a
RF0.072±0.012b0.072±0.006b0.063±0.004b0.046±0.009a0.019±0.003a
CK0.074±0.013b0.076±0.010ab0.064±0.005b0.047±0.011a0.016±0.004a
弯曲力矩
Bending moment (N?cm)
2018RFC41.53±1.74a35.38±1.32a27.88±1.69a19.82±1.82a11.42±1.30a
RC36.96±2.27b30.85±1.74b23.67±0.78b16.58±0.36b9.01±0.33b
RF36.52±2.90b31.00±2.11b23.85±1.99b16.58±1.59b8.95±0.84b
CK37.70±1.76b31.06±2.17b23.49±1.90b16.53±1.73a8.73±1.27b
2019RFC39.28±1.57a33.62±1.39a25.61±1.16a17.99±0.94a9.91±0.26a
RC37.32±2.45a31.43±1.78ab24.06±1.21ab17.00±1.01ab9.26±0.39ab
RF36.19±1.97a30.93±1.35ab23.69±0.88ab16.65±0.83ab9.12±0.47ab
CK35.61±2.92a29.87±1.40b23.09±0.88b16.11±0.56b8.57±0.29b
RFC、RC、RF和CK分别表示水稻垄作养鸡养鱼、水稻垄作养鸡、水稻垄作养鱼和水稻垄作栽培处理; 节间排序为从下向上。数据后不同小写字母表示不同处理之间在P < 0.05水平差异显著。RFC, RC, RF and CK represent ridge cultivation of rice combined with fish and chicken co-culture, ridge cultivation of rice-chicken co-culture, ridge cultivation of rice-fish co-culture and rice ridge cultivation. The internodes are ranked upward from the base. Different lowercase letters after data indicate significant differences among different treatments at P < 0.05.


下载: 导出CSV
表42018年和2019年不同处理对水稻不同节间茎秆最大应力、抗折力和倒伏指数的影响
Table4.Effect of cultivation modes on maximum stresses, breaking-resistant strengths and lodging indexes of different internodes of rice stem in 2018 and 2019
指标
Indicator
年份
Year
处理
Treatment
第1节间
First internode
第2节间
Second internode
第3节间
Third internode
第4节间
Fourth internode
第5节间
Fifth internode
最大应力
Maximum stress (N?cm?2)
2018RFC374.45±12.72b371.81±73.91b317.83±73.91b318.63±66.95b497.37±42.82a
RC376.50±36.46b373.20±56.29b348.95±31.97b388.81±42.73ab562.19±83.81a
RF563.77±25.11a534.13±63.01a455.05±17.36a475.61±33.36a699.50±84.53a
CK421.69±80.54b423.52±28.74ab428.17±17.31a454.61±38.31a691.08±166.27a
2019RFC393.77±21.28b392.85±40.69a319.30±6.57b303.91±10.06a469.71±61.85a
RC394.17±6.56b354.34±40.12a351.59±1.56a309.59±30.16a427.33±2.92a
RF510.85±72.51a430.06±38.93a373.75±18.14a366.50±47.46a489.57±47.90a
CK490.75±60.73ab399.26±41.94a361.46±20.50a353.14±65.55a552.93±136.45a
抗折力
Breaking-resistant (kg)
2018RFC3.95±0.25a3.06±0.50a2.61±0.29a2.23±0.25a0.78±0.06a
RC3.44±0.08b2.69±0.29ab2.27±0.09ab1.59±0.15b0.61±0.03b
RF2.82±0.16c2.23±0.12b2.01±0.15b1.60±0.25b0.54±0.02b
CK3.05±0.38bc2.54±0.17b2.26±0.26ab1.61±0.25b0.58±0.05b
2019RFC3.49±0.06a2.88±0.06a2.46±0.13a2.12±0.10a0.73±0.05a
RC3.53±0.16a2.80±0.03a2.37±0.15a1.97±0.17ab0.68±0.03ab
RF2.89±0.11b2.36±0.13c1.92±0.14b1.55±0.13c0.56±0.05c
CK3.09±0.22b2.56±0.11b2.24±0.02a1.78±0.14bc0.62±0.03bc
倒伏指数
Lodging index
2018RFC107.62±5.99b119.61±15.19b109.54±5.85ab91.29±10.06a149.44±6.45b
RC109.80±7.95b117.31±6.24b106.50±3.04b107.54±12.23a150.35±10.54b
RF132.76±15.36a141.65±5.20a121.07±10.94a105.84±4.49a167.46±9.32a
CK127.05±9.78ab125.00±0.13ab106.55±6.28b105.51±5.02a154.82±22.81ab
2019RFC114.80±4.12b118.98±2.66b106.26±1.33b86.69±3.72b139.42±11.93b
RC107.80±5.58b114.62±6.02b103.79±4.83b88.36±3.07b138.61±7.98b
RF127.93±5.50a133.66±4.92a126.30±5.91a110.20±6.51a165.88±9.70a
CK117.78±5.07ab119.19±5.84b105.20±3.89b92.82±6.45b141.69±4.16b
RFC、RC、RF和CK分别表示水稻垄作养鸡养鱼、水稻垄作养鸡、水稻垄作养鱼和水稻垄作栽培处理; 节间排序为从下向上。数据后不同小写字母表示不同处理之间在P < 0.05水平差异显著。RFC, RC, RF and CK ridge cultivation of rice combined with fish and chicken co-culture, ridge cultivation of rice-chicken co-culture, ridge cultivation of rice-fish co-culture and rice ridge cultivation. The internodes are ranked upward from the base. Different lowercase letters after data indicate significant differences among different treatments at P < 0.05.


下载: 导出CSV

参考文献(37)
[1]ZHOU Q, JU C X, WANG Z Q, et al. Grain yield and water use efficiency of super rice under soil water deficit and alternate wetting and drying irrigation[J]. Journal of Integrative Agriculture, 2017, 16(5): 1028-1043 doi: 10.1016/S2095-3119(16)61506-X
[2]ISLAM M S, PENG S B, VISPERAS R M, et al. Lodging-related morphological traits of hybrid rice in a tropical irrigated ecosystem[J]. Field Crops Research, 2007, 101(2): 240-248 doi: 10.1016/j.fcr.2006.12.002
[3]SETTER T L, LAURELES E V, MAZAREDO A M. Lodging reduces yield of rice by self-shading and reductions in canopy photosynthesis[J]. Field Crops Research, 1997, 49(2/3): 95-106 http://www.sciencedirect.com/science/article/pii/S0378429096010581
[4]陈桂华, 邓化冰, 张桂莲, 等. 水稻茎秆性状与抗倒性的关系及配合力分析[J]. 中国农业科学, 2016, 49(3): 407-417 doi: 10.3864/j.issn.0578-1752.2016.03.001
CHEN G H, DENG H B, ZHANG G L, et al. The correlation of stem characters and lodging resistance and combining ability analysis in rice[J]. Scientia Agricultura Sinica, 2016, 49(3): 407-417 doi: 10.3864/j.issn.0578-1752.2016.03.001
[5]ZHANG W J, LI G H, YANG Y M, et al. Effects of nitrogen application rate and ratio on lodging resistance of super rice with different genotypes[J]. Journal of Integrative Agriculture, 2014, 13(1): 63-72 doi: 10.1016/S2095-3119(13)60388-3
[6]李国辉, 钟旭华, 田卡, 等. 施氮对水稻茎秆抗倒伏能力的影响及其形态和力学机理[J]. 中国农业科学, 2013, 46(7): 1323-1334 doi: 10.3864/j.issn.0578-1752.2013.07.003
LI G H, ZHONG X H, TIAN K, et al. Effect of nitrogen application on stem lodging resistance of rice and its morphological and mechanical mechanisms[J]. Scientia Agricultura Sinica, 2013, 46(7): 1323-1334 doi: 10.3864/j.issn.0578-1752.2013.07.003
[7]董明辉, 张洪程, 戴其根, 等. 不同粳稻品种倒伏指数及其相关农艺性状的分析[J]. 吉林农业大学学报, 2003, 25(2): 120-123 doi: 10.3969/j.issn.1000-5684.2003.02.001
DONG M H, ZHANG H C, DAI Q G, et al. Analysis of lodging indices and correlative agronomic characters of different Japonica rice varieties[J]. Journal of Jilin Agricultural University, 2003, 25(2): 120-123 doi: 10.3969/j.issn.1000-5684.2003.02.001
[8]杨波, 秦德荣, 刘艳, 等. 超级稻连粳7号的抗倒伏机理[J]. 江苏农业学报, 2016, 32(6): 1212-1218 doi: 10.3969/j.issn.1000-4440.2016.06.003
YANG B, QIN D R, LIU Y, et al. Lodging resistance mechanism of super rice Lianjing 7[J]. Jiangsu Journal of Agricultural Science, 2016, 32(6): 1212-1218 doi: 10.3969/j.issn.1000-4440.2016.06.003
[9]张巫军, 段秀建, 姚雄, 等. 遮阴对重穗型杂交水稻茎秆形态特征和抗倒伏性的影响[J]. 中国稻米, 2020, 26(2): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM202002003.htm
ZHANG W J, DUAN X J, YAO X, et al. Effects of shading on stem morphological traits and lodging resistance in heavy type panicle of Indica rice[J]. China Rice, 2020, 26(2): 9-13 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM202002003.htm
[10]郝树荣, 董博豪, 周鹏, 等. 水分胁迫对超级稻生长发育和抗倒伏能力的影响[J]. 灌溉排水学报, 2018, 37(9): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201809001.htm
HAO S R, DONG B H, ZHOU P, et al. The effects of water stress on growth and resistance of super rice against loading[J]. Journal of Irrigation and Drainage, 2018, 37(9): 1-8 https://www.cnki.com.cn/Article/CJFDTOTAL-GGPS201809001.htm
[11]KASHIWAGI T, HIROTSU N, UJⅡE K, et al. Lodging resistance locus prl5 improves physical strength of the lower plant part under different conditions of fertilization in rice (Oryza sativa L.)[J]. Field Crops Research, 2010, 115(1): 107-115
[12]吴晓然, 张巫军, 伍龙梅, 等. 超级杂交籼稻抗倒能力比较及其对氮素的响应[J]. 中国农业科学, 2015, 48(14): 2705-2717 doi: 10.3864/j.issn.0578-1752.2015.14.003
WU X R, ZHANG W J, WU L M, et al. Characteristics of lodging resistance of super-hybrid Indica rice and its response to nitrogen[J]. Scientia Agricultura Sinica, 2015, 48(14): 2705-2717 doi: 10.3864/j.issn.0578-1752.2015.14.003
[13]孟天瑶, 李晓芸, 李超, 等. 甬优系列籼粳杂交稻中熟高产品系的株型特征[J]. 中国水稻科学, 2016, 30(2): 170-180 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201602009.htm
MENG T Y, LI X Y, LI C, et al. Plant-type characteristics of high-yielding lines of Yongyou japonica/indica hybrid rice with medium maturity[J]. Chinese Journal of Rice Science, 2016, 30(2): 170-180 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201602009.htm
[14]郭玉华, 朱四光, 张龙步. 不同栽培条件对水稻茎秆生化成分的影响[J]. 沈阳农业大学学报, 2003, 34(2): 89-91 doi: 10.3969/j.issn.1000-1700.2003.02.003
GUO Y H, ZHU S G, ZHANG L B. Influence of different cultivation conditions on biochemistry components of rice culms[J]. Journal of Shenyang Agricultural University, 2003, 34(2): 89-91 doi: 10.3969/j.issn.1000-1700.2003.02.003
[15]郭保卫, 周兴涛, 曹利强, 等. 钵苗类型和摆栽密度对粳型超级稻植株抗倒伏能力的影响[J]. 扬州大学学报: 农业与生命科学版, 2016, 37(3): 87-94 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201603016.htm
GUO B W, ZHOU X T, CAO L Q, et al. Effects of different bowl types and densities on the culm lodging resistance of bowl seedling transplanting japonica super rice[J]. Journal of Yangzhou University: Agricultural and Life Science Edition, 2016, 37(3): 87-94 https://www.cnki.com.cn/Article/CJFDTOTAL-JSNX201603016.htm
[16]章秀福, 王丹英, 屈衍艳, 等. 垄畦栽培水稻的植株形态与生理特性研究[J]. 作物学报, 2005, 31(6): 742-748 doi: 10.3321/j.issn:0496-3490.2005.06.011
ZHANG X F, WANG D Y, QU Y Y, et al. Morphological and physiological characteristics of raised bed-cultivated rice[J]. Acta Agronomica Sinica, 2005, 31(6): 742-748 doi: 10.3321/j.issn:0496-3490.2005.06.011
[17]王丹, 刘元英, 彭显龙, 等. 肥水优化管理对寒地水稻抗倒伏性能的影响[J]. 核农学报, 2012, 26(2): 352-357 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201202029.htm
WANG D, LIU Y Y, PENG X L, et al. Effects of water and fertilizer optimization on lodging resistance of rice in cold area of northeastern China[J]. Journal of Nuclear Agricultural Sciences, 2012, 26(2): 352-357 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201202029.htm
[18]邓接楼, 欧阳佰玲, 张高阳, 等. 不同栽培条件对杂交晚稻茎秆抗倒伏性状的影响[J]. 浙江农业学报, 2016, 28(12): 1970-1978 doi: 10.3969/j.issn.1004-1524.2016.12.02
DENG J L, OUYANG B L, ZHANG G Y, et al. Influence of different cultivation conditions on stalk lodging resistances of hybrid late rice (Oryza sativa L. )[J]. Acta Agriculturae Zhejiangensis, 2016, 28(12): 1970-1978 doi: 10.3969/j.issn.1004-1524.2016.12.02
[19]杨长明, 杨林章, 颜廷梅, 等. 不同养分和水分管理模式对水稻抗倒伏能力的影响[J]. 应用生态学报, 2004, 15(4): 646-650 doi: 10.3321/j.issn:1001-9332.2004.04.021
YANG C M, YANG L Z, YAN T M, et al. Effects of nutrient and water regimes on lodging resistance of rice[J]. Chinese Journal of Applied Ecology, 2004, 15(4): 646-650 doi: 10.3321/j.issn:1001-9332.2004.04.021
[20]邬立岩, 靳峥, 温健, 等. 鸭稻共育对稻田土壤养分含量及水稻茎秆抗倒伏性的影响[J]. 沈阳农业大学学报, 2019, 50(3): 365-370 https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY201903017.htm
WU L Y, JIN Z, WEN J, et al. Effects of rice-duck farming on soil nutrient content and stem lodging resistance of rice[J]. Journal of Shenyang Agricultural University, 2019, 50(3): 365-370 https://www.cnki.com.cn/Article/CJFDTOTAL-SYNY201903017.htm
[21]王强盛, 甄若宏, 丁艳锋, 等. 稻鸭共作下水稻植株的壮秆效应及生理特性[J]. 应用生态学报, 2008, 19(12): 2661-2665 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200812018.htm
WANG Q S, ZHEN R H, DING Y F, et al. Strong stem effect and physiological characteristics of rice plant under rice-duck farming[J]. Chinese Journal of Applied Ecology, 2008, 19(12): 2661-2665 https://www.cnki.com.cn/Article/CJFDTOTAL-YYSB200812018.htm
[22]梁玉刚, 陈奕沙, 余政军, 等. 水稻梯式栽培垄上养鸡垄沟养鱼的技术设计与思考[J]. 中国稻米, 2019, 25(6): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201906003.htm
LIANG Y G, CHEN Y S, YU Z J, et al. Technical design and reflections on chicken farming on the ridge and fish farming in the furrow under rice terrace cultivation[J]. China Rice, 2019, 25(6): 6-9 https://www.cnki.com.cn/Article/CJFDTOTAL-DAOM201906003.htm
[23]刘贵斌. 垄作稻鱼鸡共生对水稻产量及农田环境的影响[D]. 长沙: 湖南农业大学, 2018
LIU G B. Effect of rice-fish-chicken symbiosis on rice yield and paddy field environment under rice ridge cultivation[D]. Changsha: Hunan Agricultural University, 2018
[24]解振兴, 张居念, 林祁, 等. 植物生长调节剂对再生稻头季抗倒伏能力和两季产量的影响[J]. 中国水稻科学, 2019, 33(2): 158-166 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201902008.htm
XIE Z X, ZHANG J N, LIN Q, et al. Effect of plant growth regulators on rice lodging resistance and grain production of main-crop and ratooning rice[J]. Chinese Journal of Rice Science, 2019, 33(2): 158-166 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGSK201902008.htm
[25]LANG Y Z, YANG X D, WANG M E, et al. Effects of lodging at different filling stages on rice yield and grain quality[J]. Rice Science, 2012, 19(4): 315-319 doi: 10.1016/S1672-6308(12)60056-0
[26]赵新勇, 邵在胜, 吴艳珍, 等. 花后人为模拟倒伏对超级稻生长、产量和品质的影响[J]. 中国生态农业学报, 2018, 26(7): 980-989 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0705&flag=1
ZHAO X Y, SHAO Z S, WU Y Z, et al. Influence of artificial lodging at grain-filling stage on plant growth, yield and quality of super rice[J]. Chinese Journal of Eco-Agriculture, 2018, 26(7): 980-989 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-0705&flag=1
[27]ZHANG M C, LIU Y Y, LUO S G, et al. Effects of integrated nutrient management on lodging resistance of rice in cold area[J]. Scientia Agricultura Sinica, 2010, 43(21): 4536-4542 http://www.cabdirect.org/abstracts/20113004948.html;jsessionid=090A3E8A1C1EEC04B247EE5AF5170AEF
[28]程慧煌, 易振波, 曾勇军, 等. 超级杂交稻抗倒伏能力及其对施肥量的响应[J]. 核农学报, 2018, 32(8): 1603-1610 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201808017.htm
CHENG H H, YI Z B, ZENG Y J, et al. Lodging resistance of super hybrid rice at different yield levels and its response to fertilization[J]. Journal of Nuclear Agricultural Sciences, 2018, 32(8): 1603-1610 https://www.cnki.com.cn/Article/CJFDTOTAL-HNXB201808017.htm
[29]艾治勇, 马国辉. 超级杂交稻抗倒高产肥料运筹技术的数学模型研究[J]. 植物营养与肥料学报, 2011, 17(4): 803-808 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201104006.htm
AI Z Y, MA G H. Study on mathematical models of fertilizer management technique for resisting lodging and high yield of super hybrid rice[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(4): 803-808 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201104006.htm
[30]周玲红, 张浪, 魏甲彬, 等. 冬闲稻田养鸡结合生物炭施用对双季稻田产量及土壤有机碳、活性碳氮的影响[J]. 农业环境科学学报, 2018, 37(9): 1961-1969 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201809020.htm
ZHOU L H, ZHANG L, WEI J B, et al. Effects of winter chicken grazing with biochar application on crop yield, and soil organic carbon, active carbon, and nitrogen content in double-crop paddy soil[J]. Journal of Agro-Environment Science, 2018, 37(9): 1961-1969 https://www.cnki.com.cn/Article/CJFDTOTAL-NHBH201809020.htm
[31]郑华斌, 姚林, 刘建霞, 等. 种植方式对水稻产量及根系性状的影响[J]. 作物学报, 2014, 40(4): 667-677 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201404012.htm
ZHENG H B, YAO L, LIU J X, et al. Effect of ridge & terraced cultivation on rice yield and root trait[J]. Acta Agronomica Sinica, 2014, 40(4): 667-677 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW201404012.htm
[32]高明, 张磊, 魏朝富, 等. 稻田长期垄作免耕对水稻产量及土壤肥力的影响研究[J]. 植物营养与肥料学报, 2004, 10(4): 343-348 doi: 10.3321/j.issn:1008-505X.2004.04.002
GAO M, ZHANG L, WEI C F, et al. Study of the changes of the rice yield and soil fertility on the paddy field under long-term no-tillage and ridge culture conditions[J]. Journal of Plant Nutrition and Fertilizers, 2004, 10(4): 343-348 doi: 10.3321/j.issn:1008-505X.2004.04.002
[33]万琪慧, 马黎华, 蒋先军. 垄作免耕对水稻根系特性和氮磷钾养分累积的影响[J]. 草业学报, 2019, 28(10): 44-52 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201910006.htm
WAN Q H, MA L H, JIANG X J. Root characteristics and accumulation of nitrogen, phosphorus, and potassium in rice plants cultivated under three different systems[J]. Acta Prataculturae Sinica, 2019, 28(10): 44-52 https://www.cnki.com.cn/Article/CJFDTOTAL-CYXB201910006.htm
[34]RAO A N, JOHNSON D E, SIVAPRASAD B, et al. Weed management in direct-seeded rice[J]. Advances in Agronomy, 2007, 93: 153-155 http://www.sciencedirect.com/science/article/pii/S0065211306930041
[35]汪清焰. 水稻茎秆成分与其力学性能关系的研究[D]. 合肥: 中国科学技术大学, 2019
WANG Q Y. Study on the relationship between components and mechanical properties of rice stem[D]. Hefei: University of Science and Technology of China, 2019
[36]姜照伟, 李小萍, 赵雅静, 等. 立丰灵对水稻抗倒性和产量性状的影响[J]. 福建农业学报, 2011, 26(3): 355-359 doi: 10.3969/j.issn.1008-0384.2011.03.006
JIANG Z W, LI X P, ZHAO Y J, et al. Effects of Lifengling on lodging resistance and yield of rice[J]. Fujian Journal of Agricultural Sciences, 2011, 26(3): 355-359 doi: 10.3969/j.issn.1008-0384.2011.03.006
[37]杨世民, 谢力, 郑顺林, 等. 氮肥水平和栽插密度对杂交稻茎秆理化特性与抗倒伏性的影响[J]. 作物学报, 2009, 35(1): 93-103 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901014.htm
YANG S M, XIE L, ZHENG S L, et al. Effects of nitrogen rate and transplanting density on physical and chemical characteristics and lodging resistance of culms in hybrid rice[J]. Acta Agronomica Sinica, 2009, 35(1): 93-103 https://www.cnki.com.cn/Article/CJFDTOTAL-XBZW200901014.htm

相关话题/农业 生态 科学 数据 水稻