删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

华北潮土冬小麦-夏玉米轮作包气带氮素淋溶机制

本站小编 Free考研考试/2022-01-01

牛新胜1, ?,,
张翀2, ?,,
巨晓棠2, 3,,
1.中国农业大学曲周实验站 曲周 057250
2.海南大学热带作物学院 海口 570228
3.中国农业大学资源与环境学院 北京 100193
基金项目: 国家重点研发计划项目2016YFD0800102
国家重点研发计划项目2017YFD0200105
国家自然科学基金项目41830751
国家自然科学基金项目31861133018

详细信息
通讯作者:巨晓棠, 研究方向为农田生态系统氮素循环与温室气体。E-mail: juxt@cau.edu.cn
?共同第一作者:牛新胜, 研究方向为农业资源与环境科学研究, E-mail: xinshengniu@163.com张翀, 研究方向为农田氮素去向及管理, E-mail: zhangchong@hainanu.edu.cn
中图分类号:S14;S15

计量

文章访问数:323
HTML全文浏览量:15
PDF下载量:181
被引次数:0
出版历程

收稿日期:2020-08-04
录用日期:2020-09-01
刊出日期:2021-01-01

Mechanism of nitrogen leaching in fluvo-aquic soil and deep vadose zone
in the North China Plain

NIU Xinsheng1, ?,,
ZHANG Chong2, ?,,
JU Xiaotang2, 3,,
1. Quzhou Experimental Station, China Agricultural University, Quzhou 057250, China
2. College of Tropical Crops, Hainan University, Haikou 570228, China
3. College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
Funds: the National Key Research and Development Project of China2016YFD0800102
the National Key Research and Development Project of China2017YFD0200105
the National Natural Science Foundation of China41830751
the National Natural Science Foundation of China31861133018

More Information
Corresponding author:JU Xiaotang E-mail: juxt@cau.edu.cn
?Equivalent contributors


摘要
HTML全文
(8)(1)
参考文献(75)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:合理水氮管理可以实现作物目标产量和品质、维持土壤肥力和降低环境污染。然而, 自20世纪90年代以来, 我国农田过量施氮和大水漫灌等问题突出, 引起农业面源污染日趋加重, 地下水硝酸盐污染成为一个普遍现象。本文以华北潮土区冬小麦-夏玉米体系为研究对象, 采用数据整合和文献分析的方法, 阐明了典型农田硝态氮淋溶的时空特征及影响因素, 研究了地表裂隙和土壤大孔隙对硝态氮淋溶的影响, 定量了氮素在地表-根层-深层包气带-地下水的垂直迁移通量及过程。结果表明, 农户常规管理的冬小麦-夏玉米轮作体系氮素盈余较高(299~358 kg·hm-2·a-1), 导致土壤根区和深层包气带累积了大量的硝态氮。冬小麦季硝态氮的迁移主要受灌溉影响, 以非饱和流为主, 且迁移距离较短; 春季单次灌溉量低于60 mm, 可以有效控制水和硝态氮淋溶出根区。冬小麦耕作和灌溉引起的地表裂隙对水氮运移的贡献不大。雨热同期的夏玉米季, 土壤水分经常处于饱和状态, 再降雨就可以导致硝态氮淋溶出根层进入深层包气带。夏玉米季极易发生硝态氮淋溶事件(占全年总淋溶事件的81%左右), 硝态氮淋溶量占全年总淋溶量的80%左右, 且单次淋溶事件的淋溶量较高。大孔隙优先流对夏玉米季根区硝态氮淋溶的贡献率在71%左右, 这些硝态氮脱离了作物根系吸收范围, 反硝化作用对硝态氮去除具有一定作用。在华北气候-土壤条件下, 特别应注意冬小麦收获后土壤不应残留过多硝态氮, 以避免夏玉米季降雨发生大量淋溶; 夏玉米季需要注意施氮与作物需氮的匹配。由于夏玉米追肥困难, 生产上提倡一次性施肥措施, 控释肥应该能够发挥更大作用。未来气候变化, 导致夏季极端高强度降雨事件的频率增加, 将会加剧包气带累积硝态氮通过饱和流或优先流向地下水的迁移。合理的水氮管理是从源头上减少硝态氮向深层包气带和地下水迁移的主要措施。
关键词:潮土/
冬小麦-夏玉米体系/
氮素淋溶/
硝态氮/
包气带/
裂隙/
大孔隙/
优先流
Abstract:Rationally managing nitrogen (N) and water results in high crop yield and quality, maintains (or improves) soil fertility, and reduces environmental pollution. However, since the 1990s, excessive use of N fertilizer and flood irrigation has created problems in Chinese croplands, causing agricultural nonpoint source pollution and groundwater nitrate contamination. Data integration and literature review of winter-wheat summer-maize farmlands in fluvo-aquic soil in the North China Plain was used to investigate the temporal and spatial variation of N leaching, the contribution of cracks and macropores to N leaching, and N movement through soil (along the surface to groundwater continuum). The results showed that the N surplus was very high (299-358 kg·hm-2·a-1) when conventional management was used, resulting in high nitrate accumulation in the root and deep vadose zones. Nitrate movement in the winter wheat season was primarily caused by unsaturated flow and affected by irrigation; the nitrate movement distance was short. Water and nitrate loss from the root zone was negligible if the irrigation amount was lower than 60 mm. In the winter wheat season, tillage- and irrigation-induced cracks contributed minimally to nitrate and water movement out of the root zone. In the wet and hot summer maize season, the soil was frequently water-saturated, and small precipitation amounts lead to nitrate leaching, accounting for 81% of the annual leaching events and 80% of the annual nitrate leaching. In the summer maize season, the leached nitrate amounts were much higher than in the winter wheat season, and 71% of the total nitrate leaching was preferential flow caused by macropores. Nitrate from the root zone could be partially removed by denitrification in the deep vadose zone. In the North China Plain, avoiding high nitrate accumulation after winter wheat harvest was effective at decreasing nitrate leaching in the summer maize season. Matching the N fertilizer supply with crop demand and controlled release fertilizer in summer maize season (to avoid costly topdressing N fertilizer) may also play important roles in leaching reduction. Frequent and heavy rainfall accelerates the movement of nitrate via saturated and preferential flow to groundwater. Therefore, rational water and N management is key to reducing nitrate movement to the deep vadose zone and groundwater.
Key words:Fluvo-aquic soil/
Winter wheat-summer maize rotation/
Nitrogen leaching/
Nitrate nitrogen/
Vadose zone/
Crack/
Macropore/
Preferential flow
?Equivalent contributors

注释:
1) ?共同第一作者:牛新胜, 研究方向为农业资源与环境科学研究, E-mail: xinshengniu@163.com张翀, 研究方向为农田氮素去向及管理, E-mail: zhangchong@hainanu.edu.cn

HTML全文


图1华北潮土冬小麦-夏玉米轮作周年气候、田间管理、土壤质量含水量、硝态氮累积量及硝酸盐淋溶量
红色箭头代表发生硝态氮向1 m以下土体迁移, 粗细和数字代表硝态氮淋溶量(kg·hm-2)。降雨量和大气温度来自Gao等[46]。土壤含水量和硝态氮累积量分布图引自李洪亮[47], 硝态氮淋溶数据引自Huang等[8]
Figure1.Annual climate, field management, soil gravimetric water content, nitrate accumulation and leaching in the winter wheat-summer maize rotation in the North China Plain
The red arrows denote the moving down of nitrate from root zone (0-1 m), the width of arrows and numbers denote the amount of nitrate leaching. Precipitation and air temperature were cited from Gao et al. [46]. Soil water content and soil nitrate accumulation were cited from Li[47], nitrate leaching was cited from Huang et al.[8].


下载: 全尺寸图片幻灯片


图2模拟灌水后土壤水和温度对裂隙发育的影响[52]
裂隙率=裂隙面积/灌溉小区的总面积×100%。
Figure2.Effects of soil water and temperature on soil crack development after the simulated irrigation[52]
Crack area density=crack area/plot area×100%.


下载: 全尺寸图片幻灯片


图3模拟灌溉对优先流的影响
图a是亮蓝在土壤垂直剖面的染色情况, 图b是亮蓝在不同层次水平方向的染色面积比例。IS45、IS90和IS135分别指模拟灌水45 mm、90 mm和135 mm, -1、-2和-3分别指3个重复。
Figure3.Effect of irrigation on preferential flow under simulated rainfall
figure a is the vertical distribution of brilliant blue in the soil profile, figure b is the percentage of dyeing area in the horizontal direction of each soil layer. IS45, IS90 and IS135 denote irrigaiton of 45 mm, 90 mm and 135 mm, respectively.-1, -2 and-3 denote three replications of the same irrigaiton treatment.


下载: 全尺寸图片幻灯片


图4土壤垂直剖面不同级别大孔隙单位面积数量及比例
Ind.表示个数。
Figure4.Percentage and numbers of macropores of different sizes in soil profile
Ind. denotes individual.


下载: 全尺寸图片幻灯片


图5农户常规管理农田土壤剖面亮蓝染色面积占比
图例代表不同采样点。
Figure5.Preferential flow in the cropland under farmer's conventional management
Villages in the legend denote sampling sites.


下载: 全尺寸图片幻灯片


图6优先流对土壤水(a)和硝态氮淋溶(b)的贡献
CK、AC1、AC2和UC分别代表无大孔隙模拟土柱、少孔隙模拟土柱、多孔隙模拟土柱和原状土柱, 折线图代表发生连续的淋溶事件, 点状图代表不连续淋溶事件。
Figure6.Contribution of preferential flow to water (a) and nitrate leaching (b)
CK, AC1, AC2 and UC denote the artificial soil column with no, little and much macropores, and undisturbed soil column, respectively. Line plot denote the continuous leaching event, scatter plot denote the non-continuous leaching event.


下载: 全尺寸图片幻灯片


图7降雨量与土壤淋溶液体积和硝态氮淋溶量的关系
CK、AC1、AC2和UC分别代表无大孔隙模拟土柱、少孔隙模拟土柱、多孔隙模拟土柱和原状土柱。
Figure7.Relationship among the losses of water and nitrate nitrogen and rainfall
K, AC1, AC2 and UC denote the artificial soil column with no, little and much macropores, and undisturbed soil column, respectively.


下载: 全尺寸图片幻灯片


图8氮素在地表-根层-深层包气带-地下水的垂直迁移过程及消减机制
所有数字单位均为kg·hm-2·a-1, 氮素投入、作物吸收氮引自Wang等[24]和Ju等[2]的结果, 氨挥发依据Ju等[2]的氨挥发损失率估算。根层和深层包气带反硝化根据Wang等[24]的结果估算。根区氮淋溶为氮投入减去作物吸收、氨挥发和根层反硝化。深层包气带淋溶为根区氮淋溶减去深层包气带反硝化。
Figure8.Mechanism of nitrogen movement and removal in the surface soil-root zone-deep vadose zone-groundwater continuum
Units for all numbers in the figure are kg·hm-2·a-1. Input, uptake, NH3, Deni.(root), Leaching (root), Deni. (deep), Leaching (root) denote total nitrogen input, crop nitrogen uptake, ammonia volatilization, denitrification and nitrate leaching in the root zone, denitrification and nitrate leaching in the deep vadose zone (> 1 m). Nitrogen input and crop nitrogen uptake was cited from Wang et al. [24] and Ju et al. [2], ammonia volatilization was calculated based on the ammonia volatilization rate of Ju et al. [2], denitrification in the root zone (0-1 m) and deep vadose zone (>1 m) were estimated from Wang et al. [24]. Nitrate leaching from root zone was calculated by deducting crop nitrogen uptake, nitrogen losses via ammonia volatilization and denitrification in root zone from nitrogen input. Denitrification in deep vadose zone was calculated by deducting denitrification in deep vadose zone from nitrate leaching from root zone.


下载: 全尺寸图片幻灯片

表1华北平原冬小麦-夏玉米体系氮素收支平衡与盈余
Table1.Nitrogen budget and surplus in the winter wheat-summer maize rotation system in the North China Plain?kg·hm-2
输入Input 数据Data 输出Output 数据Data
化肥Fertilizer 474±139 籽粒Grain 301±33
有机肥Manure 15±77 淋溶Leaching 119±35
生物固定Biological nitrogen fixation 15 氨挥发Ammonia volatilization 108±35
大气沉降Deposition 63 反硝化Denitrification 17±16
灌溉Irrigation 24±24
种子Seed 8±25
总输入Total input 600±162 总输出Total output 545±84
土壤氮库变化Change of soil nitrogen stock 54±95 盈余Surplus 299±167
数据来源包括实地调研(n=420)和文献调研。其中, 化肥、有机肥、灌溉、种子输入氮和籽粒输出氮通过实地调研投入量后, 结合其氮含量(除化肥外, 其他输入和输出项氮含量均为实测值)换算获得, 如灌溉投入量为农户提供的灌水量乘以实测灌溉水含氮量获得。生物固氮数据来自赵荣芳等[44], 氮沉降来自Xu等[43], 淋溶、氨挥发和反硝化数据根据赵荣芳等[44]建立的氮损失与施氮量的经验模型计算获得。Data were obtained from farmer survey (n=420) and literatures. N input from fertilizer, manure, irrigation and seed and N output from grain was calculated by multiplying survey data (e.g., irrigation amount) by corresponding measured concentration (e.g., nitrogen concentration in irrigation water). Biological nitrogen fixation was obtained from Zhao et al. [44], nitrogen deposition was obtained from Xu et al. [43]. Leaching, ammonia volatilization and denitrification were calculated by using nitrogen loss models obtained from Zhao et al. [44], based on the relationships between ammonia volatilization, leaching, denitrification and nitrogen application rates.


下载: 导出CSV

参考文献(75)
[1]巨晓棠, 张翀.论合理施氮的原则和指标[J].土壤学报, 2020, https://kns.cnki.net/kcms/detail/32.1119.P.20200824.1833. 004.html
U X T, ZHANG C. The principles and indicators of rational N fertilization[J]. Acta Pedologica Sinica, 2020, https://kns. cnki.net/kcms/detail/32.1119.P.20200824.1833.004.html
[2]JU X T, XING G X, CHEN X P, et al. Reducing environmental risk by improving N management in intensive Chinese agricultural systems[J]. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(9): 3041-3046 doi: 10.1073/pnas.0813417106
[3]LIU J G, YANG W. Water sustainability for China and beyond[J]. Science, 2012, 337(6095): 649-650 doi: 10.1126/science.1219471
[4]LU J, BAI Z H, VELTHOF G L, et al. Accumulation and leaching of nitrate in soils in wheat-maize production in China[J]. Agricultural Water Management, 2019, 212: 407-415 doi: 10.1016/j.agwat.2018.08.039
[5]王仕琴, 郑文波, 孔晓乐.华北农区浅层地下水硝酸盐分布特征及其空间差异性[J].中国生态农业学报, 2018, 26(10): 1476-1482 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201810007.htm
WANG S Q, ZHENG W B, KONG X L. Spatial distribution characteristics of nitrate in shallow groundwater of the agricultural area of the North China Plain[J]. Chinese Journal of Eco-Agriculture, 2018, 26(10): 1476-1482 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201810007.htm
[6]HAN D M, CURRELL M J, CAO G L. Deep challenges for China's war on water pollution[J]. Environmental Pollution, 2016, 218: 1222-1233 doi: 10.1016/j.envpol.2016.08.078
[7]马洪斌, 李晓欣, 胡春胜.中国地下水硝态氮污染现状研究[J].土壤通报, 2012, 43(6): 1532-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm
MA H B, LI X X, HU C S. Status of nitrate nitrogen contamination of groundwater in China[J]. Chinese Journal of Soil Science, 2012, 43(6): 1532-1536 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201206046.htm
[8]HUANG T, JU X T, YANG H. Nitrate leaching in a winter wheat-summer maize rotation on a calcareous soil as affected by nitrogen and straw management[J]. Scientific Reports, 2017, 7: 42247 doi: 10.1038/srep42247
[9]GALLEJONES P, CASTELLóN A, DEL PRADO A, et al. Nitrogen and sulphur fertilization effect on leaching losses, nutrient balance and plant quality in a wheat-rapeseed rotation under a humid Mediterranean climate[J]. Nutrient Cycling in Agroecosystems, 2012, 93(3): 337-355 doi: 10.1007/s10705-012-9520-2
[10]PRATT P F, JONES W W, HUNSAKER V E. Nitrate in deep soil profiles in relation to fertilizer rates and leaching volume[J]. Journal of Environmental Quality, 1972, 1(1): 97-101 http://dl.sciencesocieties.org/publications/jeq/abstracts/1/1/JEQ0010010097
[11]SUCHY M, WASSENAAR L I, GRAHAM G, et al. High-frequency NO3- isotope (δ15N, δ18O) patterns in groundwater recharge reveal that short-term changes in land use and precipitation influence nitrate contamination trends[J]. Hydrology and Earth System Sciences, 2018, 22(8): 4267-4279 doi: 10.5194/hess-22-4267-2018
[12]ZHOU J Y, GU B J, SCHLESINGER W H, et al. Significant accumulation of nitrate in Chinese semi-humid croplands[J]. Scientific Reports, 2016, 6: 25088 doi: 10.1038/srep25088
[13]HALVORSON A D, BARTOLO M E, REULE C A, et al. Nitrogen effects on onion yield under drip and furrow irrigation[J]. Agronomy Journal, 2008, 100(4): 1062-1069 http://europepmc.org/abstract/AGR/IND44074223
[14]FAN J, HAO M, MALHI S S. Accumulation of nitrate-N in the soil profile and its implications for the environment under dryland agriculture in northern China: A review[J]. Canadian Journal of Soil Science, 2010, 90(3): 429-440 http://www.cabdirect.org/abstracts/20103275404.html;jsessionid=132DA87B13E0DE3E840CECCD624EDDA3;jsessionid=DD5DBE8254B2118E22DB76D2E739B02A
[15]CHEN S M, WANG F H, ZHANG Y M, et al. Organic carbon availability limiting microbial denitrification in the deep vadose zone[J]. Environmental Microbiology, 2018, 20(3): 980-992 doi: 10.1111/1462-2920.14027
[16]ASCOTT M J, GOODDY D C, WANG L, et al. Global patterns of nitrate storage in the vadose zone[J]. Nature Communications, 2017, 8: 1416 doi: 10.1038/s41467-017-01321-w
[17]JIA X X, ZHU Y J, HUANG L M, et al. Mineral N stock and nitrate accumulation in the 50 to 200 m profile on the loess plateau[J]. Science of the Total Environment, 2018, 633: 999-1006 doi: 10.1016/j.scitotenv.2018.03.249
[18]SEBILO M, MAYER B, NICOLARDOT B, et al. Long-term fate of nitrate fertilizer in agricultural soils[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(45): 18185-18189 doi: 10.1073/pnas.1305372110
[19]LI X X, HU C S, DELGADO J A, et al. Increased nitrogen use efficiencies as a key mitigation alternative to reduce nitrate leaching in North China Plain[J]. Agricultural Water Management, 2007, 89(1/2): 137-147 http://www.ingentaconnect.com/content/el/03783774/2007/00000089/00000001/art00016
[20]刘宏斌.农田面源污染监测方法与实践[M].北京:科学出版社, 2015
LIU H B. Monitoring Method and Practive of Agricultural Non-point Source Pollution[M]. Beijing: Science Press, 2015
[21]ZHENG W K, WAN Y, LI Y C, et al. Developing water and nitrogen budgets of a wheat-maize rotation system using auto-weighing lysimeters: Effects of blended application of controlled-release and un-coated urea[J]. Environmental Pollution, 2020, 263: 114383 doi: 10.1016/j.envpol.2020.114383
[22]YUAN Z J, SHEN Y J. Estimation of agricultural water consumption from meteorological and yield data: A case study of Hebei, North China[J]. PLoS One, 2013, 8(3): e58685 doi: 10.1371/journal.pone.0058685
[23]MUELLER N D, GERBER J S, JOHNSTON M, et al. Closing yield gaps through nutrient and water management[J]. Nature, 2012, 490(7419): 254-257 doi: 10.1038/nature11420
[24]WANG S Q, WEI S C, LIANG H Y, et al. Nitrogen stock and leaching rates in a thick vadose zone below areas of long-term nitrogen fertilizer application in the North China Plain: A future groundwater quality threat[J]. Journal of Hydrology, 2019, 576: 28-40 doi: 10.1016/j.jhydrol.2019.06.012
[25]ZHANG W L, TIAN Z X, ZHANG N, et al. Nitrate pollution of groundwater in northern China[J]. Agriculture, Ecosystems & Environment, 1996, 59(3): 223-231 http://europepmc.org/abstract/AGR/IND20619405
[26]JU X T, ZHANG C. Nitrogen cycling and environmental impacts in upland agricultural soils in North China: A review[J]. Journal of Integrative Agriculture, 2017, 16(12): 2848-2862 doi: 10.1016/S2095-3119(17)61743-X
[27]MIN L L, SHEN Y J, PEI H W, et al. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain[J]. Journal of Hydrology, 2018, 559: 510-522 doi: 10.1016/j.jhydrol.2018.02.037
[28]LIAO L X, GREEN C T, BEKINS B A, et al. Factors controlling nitrate fluxes in groundwater in agricultural areas[J]. Water Resources Research, 2012, 48(6): W00L09 doi: 10.1029/2011WR011008/full
[29]WELCH H L, GREEN C T, COUPE R H. The fate and transport of nitrate in shallow groundwater in northwestern Mississippi, USA[J]. Hydrogeology Journal, 2011, 19(6): 1239-1252 doi: 10.1007/s10040-011-0748-8
[30]ZHANG Y T, WANG H Y, LEI Q L, et al. Optimizing the nitrogen application rate for maize and wheat based on yield and environment on the Northern China Plain[J]. Science of the Total Environment, 2018, 618: 1173-1183 doi: 10.1016/j.scitotenv.2017.09.183
[31]WU D R, YU Q, LU C H, et al. Quantifying production potentials of winter wheat in the North China Plain[J]. European Journal of Agronomy, 2006, 24(3): 226-235 http://www.sciencedirect.com/science/article/pii/S1161030105000973
[32]SONG X T, JU X T, TOPP C F E, et al. Oxygen regulates nitrous oxide production directly in agricultural soils[J]. Environmental Science & Technology, 2019, 53(21): 12539-12547
[33]LU C H, FAN L. Winter wheat yield potentials and yield gaps in the North China Plain[J]. Field Crops Research, 2013, 143: 98-105 http://europepmc.org/abstract/AGR/IND500643674
[34]HAN D R, WIESMEIER M, CONANT R T, et al. Large soil organic carbon increase due to improved agronomic management in the North China Plain from 1980s to 2010s[J]. Global Change Biology, 2018, 24(3): 987-1000 http://www.ncbi.nlm.nih.gov/pubmed/29035007
[35]GAO B, JU X T, MENG Q F, et al. The impact of alternative cropping systems on global warming potential, grain yield and groundwater use[J]. Agriculture, Ecosystems & Environment, 2015, 203: 46-54 http://www.sciencedirect.com/science/article/pii/s0167880915000213
[36]XIAO D P, SHEN Y J, QI Y Q, et al. Impact of alternative cropping systems on groundwater use and grain yields in the North China Plain region[J]. Agricultural Systems, 2017, 153: 109-117 http://www.sciencedirect.com/science/article/pii/S0308521X16302402
[37]李东润.碳氮投入对潮土生产力及土壤肥力的长期影响[D].北京: 中国农业大学, 2018
LI D R. The effects of long-term C and N inputs on soil productivity and soil fertility of calcareous fluvo-aquic soil[D]. Beijing: China Agricultural University, 2018
[38]MICHALCZYK A, KERSEBAUM K C, ROELCKE M, et al. Model-based optimisation of nitrogen and water management for wheat-maize systems in the North China Plain[J]. Nutrient Cycling in Agroecosystems, 2014, 98(2): 203-222 http://smartsearch.nstl.gov.cn/paper_detail.html?id=3aabe253cf103b51c3ec99286e849fdc
[39]ZHENG X J, YU Z W, ZHANG Y L, et al. Nitrogen supply modulates nitrogen remobilization and nitrogen use of wheat under supplemental irrigation in the North China Plain[J]. Scientific Reports, 2020, 10(1): 3305 http://www.nature.com/articles/s41598-020-59877-5
[40]巨晓棠, 谷保静.我国农田氮肥施用现状、问题及趋势[J].植物营养与肥料学报, 2014, 20(4): 783-795 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201404001.htm
JU X T, GU B J. Status-quo, problem and trend of nitrogen fertilization in China[J]. Journal of Plant Nutrition and Fertilizers, 2014, 20(4): 783-795 https://www.cnki.com.cn/Article/CJFDTOTAL-ZWYF201404001.htm
[41]ZHANG X M, WU Y Y, LIU X J, et al. Ammonia emissions may be substantially underestimated in China[J]. Environmental Science & Technology, 2017, 51(21): 12089-12096 http://www.ncbi.nlm.nih.gov/pubmed/28984130
[42]张颖, 刘学军, 张福锁, 等.华北平原大气氮素沉降的时空变异[J].生态学报, 2006, 26(6): 1633-1639 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200606000.htm
ZHANG Y, LIU X J, ZHANG F S, et al. Spatial and temporal variation of atmospheric nitrogen deposition in North China Plain[J]. Acta Ecologica Sinica, 2006, 26(6): 1633-1639 https://www.cnki.com.cn/Article/CJFDTOTAL-STXB200606000.htm
[43]XU W, LUO X S, PAN Y P, et al. Quantifying atmospheric nitrogen deposition through a nationwide monitoring network across China[J]. Atmospheric Chemistry and Physics, 2015, 15(21): 12345-12360 http://adsabs.harvard.edu/abs/2015ACPD...1518365X
[44]赵荣芳, 陈新平, 张福锁.华北地区冬小麦-夏玉米轮作体系的氮素循环与平衡[J].土壤学报, 2009, 46(4): 684-697 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200904018.htm
ZHAO R F, CHEN X P, ZHANG F S. Nitrogen cycling and balance in winter-wheat-summer-maize rotation system in Northern China[J]. Acta Pedologica Sinica, 2009, 46(4): 684-697 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB200904018.htm
[45]WANG R, PAN Z L, ZHENG X H, et al. Using field-measured soil N2O fluxes and laboratory scale parameterization of N2O/(N2O+N2) ratios to quantify field-scale soil N2 emissions[J]. Soil Biology and Biochemistry, 2020, 148: 107904
[46]GAO B, JU X T, SU F, et al. Nitrous oxide and methane emissions from optimized and alternative cereal cropping systems on the North China Plain: A two-year field study[J]. Science of the Total Environment, 2014, 472: 112-124 http://www.ncbi.nlm.nih.gov/pubmed/24291136
[47]李洪亮.华北典型潮土区小麦-玉米生产体系氮磷淋失控制模式研究[D].北京: 中国农业大学, 2020
LI H L. Study on production patterns of wheat-maize rotation system for controlling of N and P leaching in typical fluvo-aquic soil of North China Plain[D]. Beijing: China Agricultural University, 2020
[48]陈晓燕, 叶建春, 陆桂华, 等.全国土壤田间持水量分布探讨[J].水利水电技术, 2004, 35(9): 113-116 https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200409033.htm
CHEN X Y, YE J C, LU G H, et al. Study on field capacity distribution about soil of China[J]. Water Resources and Hydropower Engineering, 2004, 35(9): 113-116 https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200409033.htm
[49]CAMERON K C, DI H J, MOIR J L. Nitrogen losses from the soil/plant system: A review[J]. Annals of Applied Biology, 2013, 162(2): 145-173 doi: 10.1111/aab.12014
[50]周明涛, 杨森, 秦健坤, 等.土壤裂隙研究的回顾与展望[J].土壤通报, 2017, 48(4): 988-995 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201704032.htm
ZHOU M T, YANG S, QIN J K, et al. Review on the research of soil cracks[J]. Chinese Journal of Soil Science, 2017, 48(4): 988-995 https://www.cnki.com.cn/Article/CJFDTOTAL-TRTB201704032.htm
[51]张中彬, 彭新华.土壤裂隙及其优先流研究进展[J].土壤学报, 2015, 52(3): 477-488 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503002.htm
ZHANG Z B, PENG X H. A review of researches on soil cracks and their impacts on preferential flow[J]. Acta Pedologica Sinica, 2015, 52(3): 477-488 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201503002.htm
[52]索志勇.典型潮土不同种植模式硝态氮运移及裂隙发育机制研究[D].北京: 中国农业大学, 2018
SUO Z Y. Study on NO3- files/image011.png">transport and crack development mechanism for typical calcareous soil in different cropping patterns[D]. Beijing: China Agricultural University, 2018
[53]GRAY C W, ALLBROOK R. Relationships between shrinkage indices and soil properties in some New Zealand soils[J]. Geoderma, 2002, 108(3/4): 287-299 http://www.sciencedirect.com/science/article/pii/S0016706102001362
[54]ZHANG Z B, PENG X, WANG L L, et al. Temporal changes in shrinkage behavior of two paddy soils under alternative flooding and drying cycles and its consequence on percolation[J]. Geoderma, 2013, 192: 12-20 http://www.sciencedirect.com/science/article/pii/S0016706112003047
[55]熊东红, 周红艺, 杜长江, 等.土壤裂缝研究进展[J].土壤, 2006, 38(3): 249-255 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200603003.htm
XIONG D H, ZHOU H Y, DU C J, et al. A review on the study of soil cracking[J]. Soils, 2006, 38(3): 249-255 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200603003.htm
[56]BANDYOPADHYAY K K, MOHANTY M, PAINULI D K, et al. Influence of tillage practices and nutrient management on crack parameters in a vertisol of central India[J]. Soil and Tillage Research, 2003, 71(2): 133-142 http://www.sciencedirect.com/science/article/pii/S0167198703000436
[57]NAJM M R A, JABRO J D, IVERSEN W M, et al. New method for the characterization of three-dimensional preferential flow paths in the field[J]. Water Resources Research, 2010, 46(2): W02503 doi: 10.1029/2009WR008594
[58]郭婧妤.华北平原农田氮素污染评价方法及指标研究[D].北京: 中国农业大学, 2017
GUO J Y. Study on evaluation method and index of nitrogen pollution in North China Plain[D]. Beijing: China Agricultural University, 2017
[59]张展羽, 范世敏, 王策, 等.干缩开裂黄褐土非饱和水平吸渗特征研究[J].农业机械学报, 2017, 48(7): 214-221 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201707027.htm
ZHANG Z Y, FAN S M, WANG C, et al. Characteristics of unsaturated horizontal infiltration in desiccation cracks yellow cinnamon soil[J]. Transactions of the Chinese Society for Agricultural Machinery, 2017, 48(7): 214-221 https://www.cnki.com.cn/Article/CJFDTOTAL-NYJX201707027.htm
[60]WILSON G V, LUXMOORE R J. Infiltration, macroporosity, and mesoporosity distributions on two forested watersheds[J]. Soil Science Society of America Journal, 1988, 52(2): 329-335 http://adsabs.harvard.edu/abs/1988SSASJ..52..329W
[61]WATSON K W, LUXMOORE R J. Estimating macroporosity in a forest watershed by use of a tension infiltrometer[J]. Soil Science Society of America Journal, 1986, 50(3): 578-582 http://adsabs.harvard.edu/cgi-bin/nph-data_query?bibcode=1986SSASJ..50..578W&link_type=EJOURNAL&db_key=PHY&high=
[62]秦耀东, 任理, 王济.土壤中大孔隙流研究进展与现状[J].水科学进展, 2000, 11(2): 203-207 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200002016.htm
QIN Y D, REN L, WANG J. Review on the study of macropore flow in soil[J]. Advances in Water Science, 2000, 11(2): 203-207 https://www.cnki.com.cn/Article/CJFDTOTAL-SKXJ200002016.htm
[63]牛健植, 余新晓.优先流问题研究及其科学意义[J].中国水土保持科学, 2005, 3(3): 110-116 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC200503021.htm
NIU J Z, YU X X. Preferential flow and its scientific significance[J]. Science of Soil and Water Conservation, 2005, 3(3): 110-116 https://www.cnki.com.cn/Article/CJFDTOTAL-STBC200503021.htm
[64]毕利东, 张斌, 潘继花.运用Image J软件分析土壤结构特征[J].土壤, 2009, 41(4): 654-658 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200904026.htm
BI L D, ZHANG B, PAN J H. Analysis of soil structural properties by using Image-J software[J]. Soils, 2009, 41(4): 654-658 https://www.cnki.com.cn/Article/CJFDTOTAL-TURA200904026.htm
[65]PASSONI S, DA SILVA BORGES F, PIRES L F, et al. Software Image J to study soil pore distribution[J]. Ciência e Agrotecnologia, 2014, 38(2): 122-128 http://submission.scielo.br/index.php/cagro/article/view/117727
[66]庞忠和, 黄天明, 杨硕, 等.包气带在干旱半干旱地区地下水补给研究中的应用[J].工程地质学报, 2018, 26(1): 51-61 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801006.htm
PANG Z H, HUANG T M, YANG S, et al. The potential of the unsaturated zone in groundwater recharge in arid and semiarid areas[J]. Journal of Engineering Geology, 2018, 26(1): 51-61 https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201801006.htm
[67]敦宇, 张焓, 杨征伦, 等.再生水灌溉区农田包气带及地下水中硝酸盐分布特征及来源研究[J].中国生态农业学报(中英文), 2019, 27(11): 1725-1731 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201911015.htm
DUN Y, ZHANG H, YANG Z L, et al. Distribution characteristics and sources of nitrate in the unsaturated zone and groundwater of farmlands in an area irrigated with reclaimed water[J]. Chinese Journal of Eco-Agriculture, 2019, 27(11): 1725-1731 https://www.cnki.com.cn/Article/CJFDTOTAL-ZGTN201911015.htm
[68]李晓欣, 胡春胜, 张玉铭, 等.华北地区小麦-玉米种植制度下硝态氮淋失量研究[J].干旱地区农业研究, 2006, 24(6): 7-10 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200606001.htm
LI X X, HU C S, ZHANG Y M, et al. Losses of nitrate-nitrogen from a wheat-corn rotation in North China[J]. Agricultural Research in the Arid Areas, 2006, 24(6): 7-10 https://www.cnki.com.cn/Article/CJFDTOTAL-GHDQ200606001.htm
[69]ZHANG C, JU X T, POWLSON D, et al. Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China[J]. Environmental Science & Technology, 2019, 53(12): 6678-6687 http://www.researchgate.net/publication/333360091_Nitrogen_Surplus_Benchmarks_for_Controlling_N_Pollution_in_the_Main_Cropping_Systems_of_China
[70]巨晓棠, 谷保静.氮素管理的指标[J].土壤学报, 2017, 54(2): 281-296 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201702001.htm
JU X T, GU B J. Indexes of nitrogen management[J]. Acta Pedologica Sinica, 2017, 54(2): 281-296 https://www.cnki.com.cn/Article/CJFDTOTAL-TRXB201702001.htm
[71]CUI Z L, ZHANG H Y, CHEN X P, et al. Pursuing sustainable productivity with millions of smallholder farmers[J]. Nature, 2018, 555(7696): 363-366 http://www.nature.com/articles/nature25785
[72]CHEN X P, CUI Z L, FAN M S, et al. Producing more grain with lower environmental costs[J]. Nature, 2014, 514(7523): 486-489
[73]GOULDING K W T, POULTON P R, WEBSTER C P, et al. Nitrate leaching from the broadbalk wheat experiment, rothamsted, UK, as influenced by fertilizer and manure inputs and the weather[J]. Soil Use and Management, 2000, 16(4): 244-250 http://www.cabdirect.org/abstracts/20013018792.html
[74]WANG X B, ZHOU W, LIANG G Q, et al. The fate of 15N-labelled urea in an alkaline calcareous soil under different N application rates and N splits[J]. Nutrient Cycling in Agroecosystems, 2016, 106(3): 311-324 doi: 10.1007/s10705-016-9806-x
[75]MENG Q F, SUN Q P, CHEN X P, et al. Alternative cropping systems for sustainable water and nitrogen use in the North China Plain[J]. Agriculture, Ecosystems & Environment, 2012, 146(1): 93-102 http://www.sciencedirect.com/science/article/pii/S0167880911003501

相关话题/土壤 农田 图片 管理 数据