删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

直立型扁蓿豆对干旱胁迫和复水的响应及适应策略

本站小编 Free考研考试/2022-01-01

乌日娜,
石凤翎,,
徐舶
内蒙古农业大学草原与资源环境学院/草地资源教育部重点实验室(内蒙古农业大学) 呼和浩特 010000
基金项目: 内蒙古自治区科技计划项目2019GG244

详细信息
作者简介:乌日娜, 主要从事牧草遗传育种研究。E-mail:caokundeyouxiang@126.com
通讯作者:石凤翎, 主要从事牧草遗传育种研究。E-mail:sfl0000@126.com
中图分类号:Q945.78;Q944.53

计量

文章访问数:169
HTML全文浏览量:13
PDF下载量:137
被引次数:0
出版历程

收稿日期:2020-04-24
录用日期:2020-07-04
刊出日期:2020-12-01

Medicago ruthenica (L.) Sojak. cv. Zhilixing response and adaptation strategy to drought stress and rehydration

WU Rina,
SHI Fengling,,
XU Bo
College of Grassland, Resources and Environment, Inner Mongolia Agricultural University/Key Laboratory of Grassland Resources of Ministry of Education(Inner Mongolia Agricultural University), Huhhot 010000, China
Funds: the Science and Technology Project of Inner Mongolia Autonomous Region in China2019GG244

More Information
Corresponding author:SHI Fengling, E-mail:sfl0000@126.com


摘要
HTML全文
(2)(3)
参考文献(48)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:以直立型扁蓿豆[Medicago ruthenica(L.)Sojak.cv.Zhilixing]为材料,于苗期连续干旱处理12 d后复水4 d,研究直立型扁蓿豆幼苗形态结构特征、生理代谢及生物量分配对干旱胁迫及复水的响应,揭示直立型扁蓿豆对干旱胁迫及复水的适应策略。结果表明:随着干旱胁迫时间延长,直立型扁蓿豆叶片气孔开放率逐渐降低,处理9 d后气孔及表皮细胞密度比正常浇水处理(CK)分别增加48.5%和36.6%,形成小而密的表皮细胞和气孔。生理上,除MDA含量随胁迫时间的延长逐渐增加外,其余指标均先升高后降低,干旱胁迫9 d时达最高,SOD、POD、叶绿素、可溶性糖、可溶性蛋白及脯氨酸分别较CK提高88.9%、111.2%、86.7%、140.5%、147.8%和124.6%。同时,生物量随胁迫时间的延长先增大后减小,于干旱胁迫9 d达最大值,比CK增加16.4%,总的分配格局表现出地上生物量投资高于地下,地下生物量投资比例随胁迫时间的延长逐渐增加,而地上生物量变化与其相反。复水后各指标均能恢复至CK水平或超过CK,表现出极强的复水敏感性和潜在恢复能力。该品种扁蓿豆对干旱胁迫及复水的适应主要分为3个时期:主动适应期,其生理参数的可塑性指数为形态参数的1.33倍,主要通过抗氧化及渗透调节来减少水分散失增加水分吸收、缓解氧化伤害以适应干旱逆境;被动适应期,其形态参数的可塑性指数为生理参数的1.31倍,主要采用牺牲生物量的生存策略以及降低色素含量减少光吸收的光保护机制来提高逆境下的生存能力;复水恢复期,根冠比、气孔开放率、气孔及表皮细胞密度比CK分别增加25.9%、29.7%、24.2%和16.3%,其较高的根冠比和叶片较高的气孔开放率及小而密的气孔及表皮细胞特征,保证了直立型扁蓿豆吸水能力以及水分运输效率的迅速恢复。综上,直立型扁蓿豆抗旱能力较强,能够通过形态生理的改变以及调整不同器官的生物量分配来应对与适应干旱逆境及复水,且在不同处理阶段采取不同的适应策略以达到生存目的。
关键词:直立型扁蓿豆/
干旱胁迫/
复水/
形态/
生理/
适应策略/
叶片表皮细胞/
气孔密度
Abstract:The effect of drought stress and rehydration on Medicago ruthenica (L.) Sojak cv. Zhilixing morphological structures, physiological metabolism, and matter distribution were investigated to determine the adaptation strategy in an arid environment. Seedling-stage M. ruthenica (with 6-8 leaves) were subjected to continuous drought stress for 12 days and then re-watered for 4 days; samples were collected from the control group (CK), after 9 and 12 days of drought stress, and 4 days after rehydration. Compared with the CK, the stoma opening rate decreased, while the stoma and epidermis cell densities increased by 48.5% and 36.6%, respectively. Smaller and denser epidermal cells formed. The malondialdehyde (MDA) content increased gradually during stress period. Superoxide dismutase activity (SOD), peroxidase activity (POD), and contents of chlorophyll, soluble sugar, soluble protein, and proline first increased and then decreased with prolonged drought. Total biomass also first increased then decreased, reaching the maximum after 9 days (0.433 7 g; 16.4% increase). The distribution of the above-ground biomass was higher than the under-ground biomass, and the under-ground biomass proportion increased with drought, while the opposite effect was observed with the above-ground biomass. After re-watering, all of the physiological and biochemical indexes recovered or exceeded those of the control, indicating strong rehydration sensitivity and resilience. M. ruthenica adaptation to drought stress and rehydration was divided into three periods:active adaptation, passive adaptation, and re-watering. The physiological parameter plasticity index was 0.16, 1.33 times greater than the morphological parameter index, during the active adaptation period. Drought stress adaptation was achieved by altering the antioxidant and osmotic regulation systems to reduce water loss, improving water retention and absorption efficiency, and maintaining the water absorption and loss balance. The morphological parameter plasticity index was 0.24, 1.31 times greater than the physiological parameter index, during the passive adaptation period. M. ruthenica sacrificed biomass and reduced pigments to aid survival. The root-shoot ratio (25.9%), stomatal opening rate (29.7%), and stomatal and epidermal cell density (24.2% and 16.3%, respectively) were higher than those in the CK during the re-watering period. These characteristics promoted rapid water recovery, absorption capacity, and water transport efficiency. Morphological and physiological changes allowed M. ruthenica to adapt to drought stress and rehydration, contributing to its survival in arid conditions.
Key words:Medicago ruthenica (L.) Sojak. cv. Zhilixing/
Drought stress/
Rehydration/
Morphology/
Physiology/
Adaptive strategy/
Epidermis cell of leaf/
Stomatal density

HTML全文


图1不同处理条件下直立型扁蓿豆幼苗叶片表皮细胞及气孔
CK为正常水分处理; 9d和12d为干旱胁迫9 d和12 d, Rewater为复水后4 d。不同小写字母表示CK及各处理间差异显著(P < 0.05), *表示上下表皮间差异显著(P < 0.05)。
Figure1.Epidermis cell density (A), cell length (B), cell width (C), and stoma opening rate (D), density (E), length (F) and width (G) of leaves of Medicago ruthenica (L.) Sojak. cv. Zhilixing under drought stress and rehydration
CK is the control of normal water condition. 9d and 12d are 9 and 12 days of drought stress. Rewater is rehydration for 4 days after drought stress. Different lowercase letters indicate significant differences among CK and different treatments at P < 0.05 level. * indicate significant difference between epicuticle and lower epidermis at P < 0.05 level.


下载: 全尺寸图片幻灯片


图2不同处理条件下直立型扁蓿豆幼苗叶片上表皮(A)和下表皮(B)的显微结构
Figure2.Microstructure of epidermis (A) and lower epidermis (B) of leaf of Medicago ruthenica (L.) Sojak. cv. Zhilixing under drought stress and rehydration


下载: 全尺寸图片幻灯片

表1干旱和复水条件下直立型扁蓿豆生理指标的变化
Table1.Physiological indexes of Medicago ruthenica (L.) Sojak. cv. Zhilixing under drought stress and rehydration
生理指标
Physiological index
正常水分
Control
干旱胁迫天数Drought stress days (d) 复水4 d
Rehydration for 4 days
9 12
叶绿素含量
Chlorophyll content [mg·g-1(FW)]
a 1.12±0.14b 2.28±0.12a 0.89±0.10c 1.16±0.09b
b 0.45±0.045b 0.67±0.07a 0.39±0.05b 0.43±0.057b
a+b 1.58±0.14c 2.95±0.09a 1.28±0.05d 1.59±0.07c
a/b 2.47±0.47c 3.39±0.22a 2.28±0.55c 2.70±0.38b
可溶性糖含量Soluble sugar content (mg·g-1) 22.54±2.14b 54.21±1.43a 13.41±0.72c 20.43±1.29b
可溶性蛋白含量Soluble protein content (mg·g-1) 14.34±0.54b 35.53±2.99a 7.86±0.43c 13.14±1.09b
脯氨酸含量Proline content (μg·g-1) 8.74±0.45b 19.64±1.33a 5.99±0.47c 8.66±0.61b
SOD活性SOD activity (U·g-1·min-1) 107.02±5.74c 202.22±6.59a 78.55±6.32d 108.77±11.36c
POD活性POD activity (U·g-1·min-1) 10 205.18±930.74c 21 556.87±1 436.91a 5 772.46±327.54d 10 045.42±979.20c
MDA含量MDA content (mmol·g-1) 0.038±0.003 5c 0.047±0.002b 0.086±0.002 4a 0.048±0.002 0b
同行不同小写字母表示不同处理间在P < 0.05水平差异显著。Different lowercase letters indicate significant differences at 0.05 level among different treatments.


下载: 导出CSV
表2干旱和复水条件下直立型扁蓿豆生物量分配
Table2.Biomass distribution of Medicago ruthenica (L.) Sojak. cv. Zhilixing under drought stress and rehydration
项目
Item
胁迫9天Drought stress 9 days 胁迫12天Drought stress 12 days 复水4天Rehydration 4 days
正常水分
Control
干旱胁迫
Drought stress
正常水分
Control
干旱胁迫
Drought stress
正常水分
Control
干旱胁迫
Drought stress
总生物量Total biomass (g) 0.372 7* 0.433 7b* 0.375 9* 0.402 4c* 0.379 4* 0.473 6a*
地上生物量Aboveground biomass (g) 0.264 9* 0.296 4b* 0.267 1* 0.251 6c* 0.269 9* 0.313 6a*
地下生物量Root biomass (g) 0.107 8* 0.137 4b* 0.108 8* 0.150 8ab* 0.109 4* 0.160 1a*
根冠比Root/shoot 0.407 1* 0.463 6c* 0.407 4* 0.599 6a* 0.405 4* 0.510 3b*
不同小写字母表示不同胁迫天数之间差异显著,*表示不同处理与其对照间差异显著(P < 0.05)。Different lowercase letters indicate significant differences at 0.05 level among different days of stress. * indicate significant differences between control and stress treatments on the same day at P < 0.05 level.


下载: 导出CSV
表3干旱条件下直立型扁蓿豆叶片形态及生理参数的可塑性指数
Table3.Plasticity index of Medicago ruthenica (L.) Sojak. cv. Zhilixing under drought stress
参数Parameter 干旱胁迫天数Drought stress days (d)
9 12
形态可塑性
Morphological
plasticity
气孔开放率
Stoma opening rate
0.13 0.09
气孔密度Stomatal density 0.15 0.10
表皮细胞密度
Epidermal cell density
0.12 0.23
根冠比Root/shoot 0.10 0.50
生物量Biomass 0.09 0.26
均值Average 0.12 0.24
生理可塑性
Physiological plasticity
可溶性糖Soluble sugar 0.15 0.21
可溶性蛋白Soluble protein 0.16 0.22
脯氨酸Proline 0.19 0.24
SOD 0.19 0.18
POD 0.20 0.17
MDA 0.09 0.11
叶绿素Chlorophyll 0.12 0.13
均值Average 0.16 0.18


下载: 导出CSV

参考文献(48)
[1]XU Z Z, ZHOU G S, SHIMIZU H. Plant responses to drought and rewatering[J]. Plant Signaling & Behavior, 2010, 5(6): 649-654 http://treephys.oxfordjournals.org/external-ref?access_num=10.4161/psb.5.6.11398&link_type=DOI
[2]YANG J Y, ZHENG W, TIAN Y, et al. Effects of various mixed salt-alkaline stresses on growth, photosynthesis, and photosynthetic pigment concentrations of Medicago ruthenica seedlings[J]. Photosynthetica, 2011, 49(2): 275-284 doi: 10.1007/s11099-011-0037-8
[3]GUAN B, ZHOU D, ZHANG H, et al. Germination responses of Medicago ruthenica seeds to salinity, alkalinity, and temperature[J]. Journal of Arid Environments, 2009, 73(1): 135-138 doi: 10.1016/j.jaridenv.2008.08.009
[4]AN S S, DARBOUX F, CHENG M. Revegetation as an efficient means of increasing soil aggregate stability on the Loess Plateau (China)[J]. Geoderma, 2013, 209/210: 75-85 doi: 10.1016/j.geoderma.2013.05.020
[5]ZHAO L P, WU G L, SHI Z H. Post-fire species recruitment in a semiarid perennial steppe on the Loess Plateau[J]. Australian Journal of Botany, 2013, 61(1): 29-35 doi: 10.1071/BT12186
[6]张雨桐, 石凤翎, 乔雨, 等. EMS诱变对直立型扁蓿豆出苗和幼苗生长的影响[J].草原与草业, 2019, 31(2): 24-31 http://www.cqvip.com/QK/85023X/201902/7002456945.html
ZHANG Y T, SHI F L, QIAO Y, et al. Effects of EMS mutated Medicago ruthenica (L.) Sojak. cv. Zhilixing seeds on seedling emergence and seedling growth[J]. Grassland and Prataculture, 2019, 31(2): 24-31 http://www.cqvip.com/QK/85023X/201902/7002456945.html
[7]石凤翎, 郭晓霞, 李红.扁蓿豆抗旱形态解剖结构观察与分析[J].干旱地区农业研究, 2005, 23(2): 115-118 http://www.cqvip.com/Main/Detail.aspx?id=15160849
SHI F L, GUO X X, LI H. Examination and analysis of drought-resisting morphology and anatomy of Melilotoides ruthenica[J]. Agricultural Research in the Arid Areas, 2005, 23(2): 115-118 http://www.cqvip.com/Main/Detail.aspx?id=15160849
[8]李鸿雁, 李志勇, 师文贵, 等. 6种豆科牧草叶片解剖性状与抗旱性关系研究[J].西北植物学报, 2010, 30(10): 1989-1994 http://www.cqvip.com/Main/Detail.aspx?id=35679466
LI H Y, LI Z Y, SHI W G, et al. Leaf anatomic indexes and the relations with drought resistance of the six forage of Leguminosae[J]. Acta Botanica Boreali-Occidentalia Sinica, 2010, 30(10): 1989-1994 http://www.cqvip.com/Main/Detail.aspx?id=35679466
[9]王璐, 石凤翎, 卞晓燕, 等.秋水仙素处理直立型扁蓿豆的诱变效应分析[J].种子, 2013, 32(10): 50-53 http://www.cnki.com.cn/Article/CJFDTotal-ZHZI201310014.htm
WANG L, SHI F L, BIAN X Y, et al. Analyzing the mutative effects of Medicago ruthenica (L.) Sojak. cv. Zhilixing treated by colchicine[J]. Seeds, 2013, 32(10): 50-53 http://www.cnki.com.cn/Article/CJFDTotal-ZHZI201310014.htm
[10]李慧, 石凤翎, 熊梅, 等. 60Co-γ辐射对直立型扁蓿豆种子产量及构成因子的影响[J].中国草地学报, 2013, 35(6): 9-13 http://d.wanfangdata.com.cn/periodical/zgcd201306003
LI H, SHI F L, XIONG M, et al. Effect of 60Co-γ ray irradiation on seed yields and component factors of Melilotoides ruthenicus (L.) Sojak. cv. Zhilixing[J]. Chinese Journal of Grassland, 2013, 35(6): 9-13 http://d.wanfangdata.com.cn/periodical/zgcd201306003
[11]SHU Y J, LI W, ZHAO J Y, et al. Transcriptome sequencing and expression profiling of genes involved in the response to abiotic stress in Medicago ruthenica[J]. Genetics and Molecular Biology, 2018, 41(3): 638-648 doi: 10.1590/1678-4685-gmb-2017-0284
[12]鱼小军, 肖红, 徐长林, 等.扁蓿豆和苜蓿种子萌发期抗旱性和耐盐性比较[J].植物遗传资源学报, 2015, 16(2): 405-410 http://www.cqvip.com/QK/84467A/20152/664134471.html
YU X J, XIAO H, XU C L, et al. Comparative study on drought resistance and salt tolerance of Medicago ruthenica and Medicago varia at seed germination period[J]. Journal of Plant Genetic Resources, 2015, 16(2): 405-410 http://www.cqvip.com/QK/84467A/20152/664134471.html
[13]郝建辉, 石凤翎.不同扁蓿豆材料抗旱性比较研究[J].中国草地学报, 2006, 28(3): 39-42 http://www.cnki.com.cn/Article/CJFDTotal-ZGCD200603007.htm
HAO J H, SHI F L. Study on drought resistance of Melilotoides ruthenica accessions[J]. Chinese Journal of Grassland, 2006, 28(3): 39-42 http://www.cnki.com.cn/Article/CJFDTotal-ZGCD200603007.htm
[14]李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社, 2000
LI H S. Principles and Techniques of Plant Physiological Biochemical Experiment[M]. Beijing: Higher Education Press, 2000
[15]VALLADARES F, WRIGHT S J, LASSO E, et al. Plastic phenotypic response to light of 16 congeneric shrubs from a Panamanian rainforest[J]. Ecology, 2000, 81(7): 1925-1936 doi: 10.1890/0012-9658(2000)081[1925:PPRTLO]2.0.CO;2
[16]杨琴琴.入侵植物香菇草(Hydrocotyle vulgaris)对水分的表型可塑性研究及其演变预测[D].杭州: 浙江农林大学, 2013
YANG Q Q. The phenotypic plasticity of water and the forecast of evolution of invasive plant Hydrocotyle vulgaris[D]. Hangzhou: Zhejiang A & F University, 2013
[17]FRASER L H, GREENALL A, CARLYLE C, et al. Adaptive phenotypic plasticity of Pseudoroegneria spicata: Response of stomatal density, leaf area and biomass to changes in water supply and increased temperature[J]. Annals of Botany, 2009, 103(5): 769-775 doi: 10.1093/aob/mcn252
[18]吴丽君, 李志辉, 杨模华, 等.赤皮青冈幼苗叶片解剖结构对干旱胁迫的响应[J].应用生态学报, 2015, 26(12): 3619-3626 http://www.cnki.com.cn/Article/CJFDTotal-YYSB201512007.htm
WU L J, LI Z H, YANG M H, et al. Response of leaf anatomical characteristics of Cyclobalanopsis gilva seedlings to drought stress[J]. Chinese Journal of Applied Ecology, 2015, 26(12): 3619-3626 http://www.cnki.com.cn/Article/CJFDTotal-YYSB201512007.htm
[19]姚卫杰, 张艳福, 丹曲, 等.砂生槐叶片气孔特性对干旱和低温胁迫的响应[J].贵州农业科学, 2015, 43(9): 23-29 http://qikan.cqvip.com/Qikan/Article/Detail?id=666366527
YAO W J, ZHANG Y F, DAN Q, et al. Stomatal feature of Sophora moorcroftiana leaf under drought and cold stress[J]. Guizhou Agricultural Sciences, 2015, 43(9): 23-29 http://qikan.cqvip.com/Qikan/Article/Detail?id=666366527
[20]WANG S G, JIA S S, SUN D Z, et al. Mapping QTLs for stomatal density and size under drought stress in wheat (Triticum aestivum L.)[J]. Journal of Integrative Agriculture, 2016, 15(9): 1955-1967 doi: 10.1016/S2095-3119(15)61264-3
[21]可静, 李进, 吕海英, 等.不同条件下黑果枸杞叶片气孔开度和超微结构的变化[J].干旱区研究, 2017, 34(6): 1362-1370 http://www.cnki.com.cn/Article/CJFDTotal-GHQJ201706019.htm
KE J, LI J, LYU H Y, et al. Change of stomatal aperture and ultrastructure on Lycium ruthenicum Murr. leaves under different conditions[J]. Arid Zone Research, 2017, 34(6): 1362-1370 http://www.cnki.com.cn/Article/CJFDTotal-GHQJ201706019.htm
[22]DRAKE P L, FROEND R H, FRANKS P J. Smaller, faster stomata: Scaling of stomatal size, rate of response, and stomatal conductance[J]. Journal of Experimental Botany, 2013, 64(2): 495-505 doi: 10.1093/jxb/ers347
[23]夏振华, 陈亚宁, 朱成刚, 等.干旱胁迫环境下的胡杨叶片气孔变化[J].干旱区研究, 2018, 35(5): 1111-1117 http://d.old.wanfangdata.com.cn/Periodical_ghqyj201805014.aspx
XIA Z H, CHEN Y N, ZHU C G, et al. Stomatal change in leaves of Population euphratica under drought stress[J]. Arid Zone Research, 2018, 35(5): 1111-1117 http://d.old.wanfangdata.com.cn/Periodical_ghqyj201805014.aspx
[24]赵雅丽, 熊浩, 毕玉芬, 等.干热胁迫对紫花苜蓿叶片气孔大小的影响[J].云南农业大学学报, 2013, 28(3): 336-339 http://d.wanfangdata.com.cn/Periodical/ynnydxxb201303009
ZHAO Y L, XIONG H, BI Y F, et al. Effect of drought and heat stress on leaf stomata size in alfalfa[J]. Journal of Yunnan Agricultural University, 2013, 28(3): 336-339 http://d.wanfangdata.com.cn/Periodical/ynnydxxb201303009
[25]SELOTE D S, KHANNA-CHOPRA R. Antioxidant response of wheat roots to drought acclimation[J]. Protoplasma, 2010, 245(1): 153-163 doi: 10.1007/s00709-010-0169-x
[26]SZABADOS L, SAVOURé A. Proline: A multifunctional amino acid[J]. Trends in Plant Science, 2010, 15(2): 89-97 doi: 10.1016/j.tplants.2009.11.009
[27]SLAMA I, TAYACHI S, DEY A J, et al. Differential response to water deficit stress in Alfalfa (Medicago sativa) cultivars: Growth, water relations, osmolyte accumulation and lipid peroxidation[J]. African Journal of Biotechnology, 2011, 10(72): 16250-16259 doi: 10.5897/ajb11.1202
[28]权文利, 产祝龙.紫花苜蓿抗旱机制研究进展[J].生物技术通报, 2016, 32(10): 34-41 http://d.wanfangdata.com.cn/Periodical/swjstb201610005
QUAN W L, CHAN Z L. Research progress on drought resistance mechanism of alfalfa[J]. Biotechnology Bulletin, 2016, 32(10): 34-41 http://d.wanfangdata.com.cn/Periodical/swjstb201610005
[29]SANDERS G J, ARNDT S K. Osmotic adjustment under drought conditions[M]//AROCA R. Plant Responses to Drought Stress. Berlin, Heidelberg: Springer, 2012
[30]赵宏伟, 王新鹏, 于美芳, 等.分蘖期干旱胁迫及复水对水稻抗氧化系统及脯氨酸影响[J].东北农业大学学报, 2016, 47(2): 1-7 http://www.cnki.com.cn/Article/CJFDTotal-DBDN201602001.htm
ZHAO H W, WANG X P, YU M F, et al. Effect of drought stress and rewatering on antioxidant system and proline in rice during tillering stage[J]. Journal of Northeast Agricultural University, 2016, 47(2): 1-7 http://www.cnki.com.cn/Article/CJFDTotal-DBDN201602001.htm
[31]罗桑卓玛, 辛福梅, 杨小林, 等.干旱胁迫对香柏幼苗生长和生理指标的影响[J].西北农林科技大学学报:自然科学版, 2015, 43(5): 51-57 http://www.cqvip.com/QK/90760A/20155/1005691754.html
LUOSANG Z M, XIN F M, YANG X L, et al. Effect of drought stress on growth and physiological indicators of Sabina pingii var. Wilsonii seedlings[J]. Journal of Northwest A & F University: Natural Science Edition, 2015, 43(5): 51-57 http://www.cqvip.com/QK/90760A/20155/1005691754.html
[32]CHAKRABARTY A, ADITYA M, DEY N, et al. Antioxidant signaling and redox regulation in drought- and salinity-stressed plants[M]//HOSSAIN M A, WANI S H, BHATTACHARJEE S, et al. Drought Stress Tolerance in Plants, Volume 1. Cham: Springer International Publishing, 2016: 465-498
[33]ZHANG Q, MA C, XUE X, et al. Overexpression of a cytosolic ascorbate peroxidase gene, OsAPX2, increases salt tolerance in transgenic Alfalfa[J]. Journal of Integrative Agriculture, 2014, 13(11): 2500-2507 doi: 10.1016/S2095-3119(13)60691-7
[34]EFEO?LU B, EKMEK?I Y, ?I?EK N. Physiological responses of three maize cultivars to drought stress and recovery[J]. South African Journal of Botany, 2009, 75(1): 34-42 doi: 10.1016/j.sajb.2008.06.005
[35]DJILIANOV D, DRAGⅡSKA R, YORDANOVA R, et al. Physiological changes in osmotically stressed detached leaves of alfalfa genotypes selected in vitro[J]. Plant Science, 1997, 129(2): 147-156 doi: 10.1016/S0168-9452(97)00198-2
[36]VILJEVAC M, DUGALI? K, MIHALJEVI? I, et al. Chlorophyll content, photosynthetic efficiency and genetic markers in two sour cherry (Prunus cerasus L.) genotypes under drought stress[J]. Acta Botanica Croatica, 2013, 72(2): 221-235 doi: 10.2478/botcro-2013-0003
[37]张丹, 任洁, 王慧梅.干旱胁迫及复水对红松针叶和树皮绿色组织光合特性及抗氧化系统的影响[J].生态学杂志, 2016, 35(10): 2606-2614 http://www.cnki.com.cn/Article/CJFDTotal-STXZ201610006.htm
ZHANG D, REN J, WANG H M. Response of photosynthetic characteristics and antioxidant system in needles and bark chlorenchyma of Korean pine to drought stress and rehydration[J]. Chinese Journal of Ecology, 2016, 35(10): 2606-2614 http://www.cnki.com.cn/Article/CJFDTotal-STXZ201610006.htm
[38]姚曹, 周俊, 徐洋, 等.不同苜蓿品种幼苗对干旱胁迫的生理响应[J].安徽科技学院学报, 2017, 31(4): 30-33 http://d.wanfangdata.com.cn/Periodical/ahjssfxyxb201704008
YAO C, ZHOU J, XU Y, et al. Physiological responses of different alfalfa varieties seedlings to drought stress[J]. Journal of Anhui Science and Technology University, 2017, 31(4): 30-33 http://d.wanfangdata.com.cn/Periodical/ahjssfxyxb201704008
[39]赵海明, 孙桂枝, 王学敏, 等.百脉根种质苗期抗旱性鉴定及综合评价[J].草原与草坪, 2011, 31(6): 18-26 http://d.wanfangdata.com.cn/Periodical/cyycp201106007
ZHAO H M, SUN G Z, WANG X M, et al. Comprehensive evaluation and identification of drought resistance of Lotus corniculatus in seedling stage[J]. Grassland and Turf, 2011, 31(6): 18-26 http://d.wanfangdata.com.cn/Periodical/cyycp201106007
[40]张翠梅, 师尚礼, 陈建纲.干旱胁迫对苜蓿幼苗叶绿素荧光特性和膜脂过氧化的影响[J].草原与草坪, 2019, 39(1): 16-27 http://www.cqvip.com/QK/96005A/20191/67896780504849574849484851.html
ZHANG C M, SHI S L, CHEN J G. Effects of drought stress on chlorophyll fluorescence parameters and lipid peroxodation in alfalfa seedlings[J]. Grassland and Turf, 2019, 39(1): 16-27 http://www.cqvip.com/QK/96005A/20191/67896780504849574849484851.html
[41]谢志玉, 张文辉.干旱和复水对文冠果生长及生理生态特性的影响[J].应用生态学报, 2018, 29(6): 1759-1767 http://www.cnki.com.cn/Article/CJFDTotal-YYSB201806005.htm
XIE Z Y, ZHANG W H. Effects of drought and rewatering on growth and photosynthetic physioecological characteristics of Xanthoceras sorbifolia[J]. Chinese Journal of Applied Ecology, 2018, 29(6): 1759-1767 http://www.cnki.com.cn/Article/CJFDTotal-YYSB201806005.htm
[42]施钦, 殷云龙, 王芝权, 等.中山杉及其父母本幼苗对干旱胁迫和复水的响应[J].应用生态学报, 2016, 27(11): 3435-3443 http://d.wanfangdata.com.cn/Periodical/yystxb201611005
SHI Q, YIN Y L, WANG Z Q, et al. Response in cuttings of Taxodium hybrid 'Zhongshanshan' and their parents to drought and re-hydration[J]. Chinese Journal of Applied Ecology, 2016, 27(11): 3435-3443 http://d.wanfangdata.com.cn/Periodical/yystxb201611005
[43]郭书嫄.干旱胁迫及复水条件下紫花苜蓿的生理生态响应[D].沈阳: 沈阳农业大学, 2016
GUO S Y. Eco-physiological responses of alfalfa under drought stress and re-watering[D]. Shenyang: Shenyang Agricultural University, 2016
[44]韩瑞宏, 蒋超, 董朝霞, 等. 47份苜蓿种质材料抗旱性综合评价[J].中国草地学报, 2017, 39(4): 27-35
HAN R H, JIANG C, DONG C X, et al. Comprehensive evaluation of drought resistance of 47 Medicago germplasm materials under drought stress[J]. Chinese Journal of Grassland, 2017, 39(4): 27-35
[45]张荟荟, 杨钢, 高洪文, 等. 10份豆科牧草的苗期抗旱性综合评价[J].新疆农业科学, 2013, 50(5): 938-943 http://d.wanfangdata.com.cn/Periodical/xjnykx201305023
ZHANG H H, YANG G, GAO H W, et al. Comprehensive evaluation of drought resistance of ten legume forage seedlings[J]. Xinjiang Agricultural Sciences, 2013, 50(5): 938-943 http://d.wanfangdata.com.cn/Periodical/xjnykx201305023
[46]徐炳成, 山仑, 李凤民.苜蓿与沙打旺苗期生长和水分利用对土壤水分变化的反应[J].应用生态学报, 2005, 16(12): 2328-2332 http://d.wanfangdata.com.cn/Periodical/yystxb200512020
XU B C, SHAN L, LI F M. Responses of Medicago sativa and Astragalus adsurgens seedlings growth and water use to soil moisture regime[J]. Chinese Journal of Applied Ecology, 2005, 16(12): 2328-2332 http://d.wanfangdata.com.cn/Periodical/yystxb200512020
[47]LIU Y B, LIU M T, CAO B. Effects of drought stress on antioxidant enzyme, photosynthetic pigment and flavonoid pathway in two desert shrubs[J]. Sciences in Cold and Arid Regions, 2011, 3(4): 332-338 http://d.wanfangdata.com.cn/Periodical_hhqkx-e201104006.aspx
[48]AN Y Y, LIANG Z S, ZHAO R K, et al. Organ-dependent responses of Periploca sepium to repeated dehydration and rehydration[J]. South African Journal of Botany, 2011, 77(2): 446-454 doi: 10.1016/j.sajb.2010.11.003

相关话题/生理 细胞 生态 结构 指标