删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

减氮对华南地区甜玉米大豆间作系统产量稳定性的影响

本站小编 Free考研考试/2022-01-01

刘培,
邵宇婷,
王志国,
唐艺玲,
王建武,
农业农村部华南热带农业环境重点实验室/广东省生态循环农业重点实验室/广东省现代生态循环农业工程中心/华南农业大学资源环境学院 广州 510642
基金项目: 国家自然科学基金项目31770556

详细信息
作者简介:刘培, 主要从事甜玉米//大豆间作体系优化研究。E-mail:2326147321@qq.com
通讯作者:王建武, 主要从事循环农业和转基因作物安全方面的研究。E-mail:wangjw@scau.edu.cn
中图分类号:S344.2

计量

文章访问数:704
HTML全文浏览量:4
PDF下载量:721
被引次数:0
出版历程

收稿日期:2019-02-22
录用日期:2019-04-01
刊出日期:2019-09-01

Effect of nitrogen reduction on yield stability of sweet maize//soybean intercropping system in South China

LIU Pei,
SHAO Yuting,
WANG Zhiguo,
TANG Yiling,
WANG Jianwu,
Key Laboratory of Tropical Agro-Environment, Ministry of Agriculture and Rural Affairs/Guangdong Provincial Key Laboratory of Eco-Circular Agriculture/Guangdong Engineering Research Center for Modern Eco-Agriculture and Circular Agriculture/College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
Funds: the National Natural Science Foundation of China31770556

More Information
Corresponding author:WANG Jianwu, E-mail: wangjw@scau.edu.cn


摘要
HTML全文
(5)(3)
参考文献(51)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:在广东省广州市华南农业大学试验中心,通过大田定位试验(2013年秋-2017年秋5年9季)对比了两种施氮水平[减量施氮(300 kg·hm-2,N1)和常规施氮(360 kg·hm-2,N2)]、4种种植模式[甜玉米单作(SS)、甜玉米//大豆2:3间作(S2B3)、甜玉米//大豆2:4间作(S2B4)、大豆单作(SB)]的甜玉米、大豆及系统产量的动态变化,采用W2(Wricke's ecovalence,生态价值指数)、变异系数(CV)和可持续指数(SYI)评价了产量的时间稳定性,旨在为华南地区一年2熟制甜玉米产区地力保育和绿色生产提供科学依据。结果表明:1)各处理甜玉米、大豆和系统总产量呈现明显的生产季节动态变化,不同年季、种植模式对甜玉米、大豆和系统总产量均有极显著影响,施氮水平仅显著影响甜玉米的产量。2)所有间作处理甜玉米的相对产量均高于单作,间作系统的实际产量损失指数(AYLs)均大于零,表明甜玉米//大豆间作能稳定地保持间作优势且显著提高了土地利用效率。3)不同处理甜玉米产量的W2、CV和SYI均没有显著差异,但单作大豆的W2值显著高于间作,单作大豆的产量稳定性低于间作大豆。种植模式对系统总产量稳定性有显著影响,且间作大豆提高了其稳定性。4)间作大豆显著提高了土壤地力贡献率,S2B3和S2B4的平均地力贡献率分别为75.07%和74.27%,比SS分别高30.29和29.47个百分点。5)与单作甜玉米相比,9季甜玉米//大豆间作显著提高了土壤pH,缓解了长期大量施氮导致的土壤酸化对地力的影响。连续减量施氮没有影响甜玉米//大豆间作系统土壤有机质和全量养分含量,300 kg·hm-2的施氮量能够满足甜玉米和大豆对氮素的需要。减量施氮与间作大豆是华南甜玉米产区资源高效利用、系统产量稳定的可持续绿色生产模式。
关键词:减量施氮/
甜玉米//大豆间作/
产量稳定性/
土壤地力贡献率/
肥料贡献率/
绿色生产模式
Abstract:The increasing demand for fresh sweet maize (Zea mays L. saccharata) in southern China has prioritized the need to find solutions to the environmental pollution caused by its continuous production and excessive use of chemical nitrogen fertilizers. A promising method for improving crop production and environmental conditions is to intercrop sweet maize with legumes and to reduce nitrogen fertilization. In this paper, a field experiment was conducted at the Experimental Center of South China Agriculture University for a total of 9 cropping season in five years (2013-2017) to investigate the dynamic changes of maize//soybean intercropping and system yields in sweet maize farmlands in South China under two nitrogen levels[reduced nitrogen dose of 300 kg·hm-2 (N1) and conventional nitrogen dose of 360 kg·hm-2 (N2)] and four cropping patterns[sole sweet maize (SS), sweet maize//soybean intercropping with sweet maize to soybean line ratios of 2:3 (S2B3) and 2:4 (S2B4), sole soybean (SB)]. This study analyzed the dynamic change of land equivalent ratio and actual yield loss index, and evaluated the stability of system yield by W2 (Wricke's ecovalence), CV (coefficient of variation) and SYI (sustainability index), and aimed to explore the effects of reduced nitrogen application on the time stability of sweet maize//soybean intercropping system in South China. Results showed that:1) the yields of sweet maize, soybean, and the total system under different treatments showed obvious seasonal dynamic changes and were significantly affected by cropping and planting patterns. Nitrogen application levels only significantly affected the yield of sweet maize. 2) The relative yield of sweet maize under all intercropping treatments was higher than that under monocropping, and the actual yield loss index (AYLs) of the intercropping system was greater than zero, indicating that sweet maize//soybean intercropping could maintain the intercropping advantage stably and significantly improving land use efficiency. 3) There were no significant differences in W2, CV and SYI of sweet maize among different treatments, but the W2value of monocropping soybean was significantly higher than that of the intercropping patterns, and the yield stability of monocropping soybean was lower than that of intercropping soybean. Planting pattern had a significant effect on the stability of the total yield of the system, and intercropping soybean increased the stability of the total yield of the system. 4) Nitrogen fixation of intercropping soybean significantly increased the soil fertility contribution rate. The soil fertility contribution rate of S2B3 and S2B4 were 75.07% and 74.27%, respectively, which were 30.29 and 29.47 percentage points higher than that of SS, respectively. 5) Compared with monocropping sweet maize, sweet maize//soybean intercropping in 9 seasons significantly increased soil pH and alleviated the effect of soil acidification induced by a large amount of nitrogen application on soil fertility for a long time. The soil organic matter and total nutrient content in the sweet maize//soybean intercropping system were not affected by continuous reduced nitrogen application, and 300 kg·hm-2 could meet the needs of sweet maize and soybean for nitrogen. Reducing nitrogen application and intercropping soybean are sustainable and green production models for efficient utilization of resources and stable system yield in sweet maize producing areas in South China.
Key words:Reduced nitrogen application/
Sweet maize//soybean intercropping/
Yield stability/
Soil fertility contribution rate/
Fertilizer contribution rate/
Green production model

HTML全文


图12013—2017年试验区月降雨量(mm)和月平均温度(℃)
Figure1.Monthly rainfall (mm) and monthly average temperature (℃) from 2013 to 2017 in the study area


下载: 全尺寸图片幻灯片


图22013—2017年不同处理下甜玉米//大豆间作系统的甜玉米(A)、大豆(B)和系统总产量(C)
SS:甜玉米单作; S2B3:甜玉米//大豆2:3间作; S2B4:甜玉米//大豆2:4间作; SB:大豆单作; N1:减量施氮; N2:常规施氮。
Figure2.Sweet maize (A), soybean (B) and total (C) yields of sweet maize//soybean intercropping systems under different treatments from 2013 to 2017
SS: sole sweet maize; S2B3: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:3; S2B4: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:4; SB: sole soybean; N1: reduced nitrogen dose, 300 kg·hm-2; N2: conventional nitrogen dose, 360 kg·hm-2.


下载: 全尺寸图片幻灯片


图32013—2017年各处理下甜玉米//大豆间作物系统的实际产量损失指数和土地当量比
S2B3:甜玉米//大豆2:3间作; S2B4:甜玉米//大豆2:4间作; N1:减量施氮; N2:常规施氮。不同小写字母表示相同季节不同处理之间差异显著(Duncan法, P < 0.05)。
Figure3.Actual yield loss (AYL) index and land equivalent ratio (LER) of different treatments of sweet maize//soybean intercropping systems from 2013 to 2017
S2B3: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:3; S2B4: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:4; N1: reduced nitrogen dose, 300 kg·hm-2; N2: conventional nitrogen dose, 360 kg·hm-2. Different lowercase letters indicate significant differences among treatments during the same crop season at 0.05 level.


下载: 全尺寸图片幻灯片


图42016—2017年各处理甜玉米//大豆间作系统的土壤地力贡献率(A)与肥料贡献率(B)
SS:甜玉米单作; S2B3:甜玉米//大豆2:3间作; S2B4:甜玉米//大豆2:4间作; N1:减量施氮; N2:常规施氮。
Figure4.Soil fertility contribution rate and fertilizer contribution rate of different treatments of sweet maize//soybean intercropping system in 2016-2017
SS: sole sweet maize; S2B3: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:3; S2B4: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:4; N1: reduced nitrogen dose, 300 kg·hm-2; N2: conventional nitrogen dose, 360 kg·hm-2.


下载: 全尺寸图片幻灯片


图52016—2017年各处理甜玉米//大豆间作系统的平均肥料贡献率
SS:甜玉米单作; S2B3:甜玉米//大豆2:3间作; S2B4:甜玉米//大豆2:4间作; N1:减量施氮; N2:常规施氮。柱形图上不同小写字母表示不同处理之间差异显著(Duncan法, P < 0.05)。
Figure5.Averaged fertilizer contribution rates of different treatments of sweet maize//soybean intercropping system in 2016-2017
SS: sole sweet maize; S2B3: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:3; S2B4: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:4; N1: reduced nitrogen dose, 300 kg·hm-2; N2: conventional nitrogen dose, 360 kg·hm-2. Different lowercase letters in the bars indicate significant differences among treatments (Duncan's multiple range test, P < 0.05).


下载: 全尺寸图片幻灯片

表12013—2017年各处理下甜玉米//大豆间作物系统中甜玉米、大豆和系统产量3因素方差分析
Table1.Three factors anova of variance for sweet maize, soybean and system yields of sweet maize//soybean intercropping systems during 2013-2017
变异来源
Sources of variation
甜玉米产量Sweet maize yield 大豆产量Soybean yield 系统总产量Total yields
df F df F df F
年季(S) Season 8 126.31*** 8 102.493*** 8 145.124***
种植模式(C) Cropping system 2 1 155.714*** 1 26.643*** 2 165.376***
施氮水平(N) Nitrogen rate 1 3.165* 1 0.187 1 0.085
S x C 16 3.987*** 8 1.898 16 12.798***
S x N 8 0.677 8 0.719 8 0.597
C x N 2 0.365 1 0.061 2 0.007
S x C x N 16 0.518 8 0.398 16 0.413
*: P < 0.05; **: P < 0.01; ***: P < 0.001.


下载: 导出CSV
表22013—2017年各处理甜玉米//大豆间作系统的甜玉米、大豆和系统平均产量及产量稳定性分析
Table2.Yields and yield stability analysis of sweet maize, soybean and system of sweet maize//soybean intercropping system in 2013-2017
项目
Item
处理
Treatment
平均产量
Average yield (g·m-2)
W2 CV SYI
甜玉米
Sweet maize
SS-N1 1 458.01±21.36a 59 058.72±14 226.43a 0.15±0.01a 0.70±0.02a
SS-N2 1 465.23±7.11a 49 173.47±34 634.47a 0.14±0.02a 0.71±0.03a
S2B3-N1 1 028.40±8.80b 32 619.94±7 714.11a 0.16±0.01a 0.67±0.03a
S2B3-N2 1 046.83±6.40b 35 472.55±11 065.80a 0.17±0.01a 0.63±0.02a
S2B4-N1 872.99±4.54c 31 526.87±7 201.25a 0.14±0.00a 0.71±0.01a
S2B4-N2 901.24±5.10c 36 695.23±4 573.20a 0.15±0.01a 0.66±0.01a
大豆Soybean S2B3-N1 925.18±33.41c 240 018.66±80 589.90bc 0.40±0.00ab 0.36±0.01a
S2B3-N2 918.62±37.33c 159 848.76±13 378.19c 0.45±0.03a 0.32±0.03a
S2B4-N1 1 118.15±25.30b 187 595.90±12 721.16c 0.41±0.02a 0.35±0.03a
S2B4-N2 1 094.09±24.66b 373 320.85±79 119.20b 0.47±0.03a 0.31±0.05a
SB 2 050.44±23.37a 932 332.24±52 727.71a 0.32±0.02b 0.41±0.02a
系统合计System total SS-N1 1 458.01±21.36c 829 473.24±79 234.47ab 0.15±0.01d 0.70±0.02a
SS-N2 1 465.23±7.11c 759 126.67±12 117.10ab 0.14±0.02d 0.71±0.03a
S2B3-N1 1 953.58±30.37b 180 680.78±36 099.10c 0.24±0.01c 0.54±0.02b
S2B3-N2 1 965.44±30.98b 212 720.77±45 027.59c 0.26±0.01bc 0.50±0.03bc
S2B4-N1 1 991.14±20.82ab 297 393.72±85 027.91c 0.27±0.01bc 0.49±0.03bc
S2B4-N2 1 995.33±26.00ab 654 911.29±179 568.71b 0.30±0.03ab 0.47±0.06bc
SB 2 050.44±23.37a 1 052 659.53±120 618.58a 0.32±0.02a 0.41±0.02d
SS:甜玉米单作; S2B3:甜玉米//大豆2:3间作; S2B4:甜玉米//大豆2:4间作; SB:大豆单作; N1:减量施氮; N2:常规施氮。W2: Wricke’s生态价值; SYI:产量可持续指数; CV:变异系数。数值为均值±标准误, 同列同一项目数据不同小写字母代表不同处理之间差异显著(Duncan法, P < 0.05)。SS: sole sweet maize; S2B3: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:3; S2B4: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:4; SB: sole soybean; N1: reduced nitrogen dose, 300 kg·hm-2; N2: conventional nitrogen dose, 360 kg·hm-2. W2: Wricke’s ecovalence; SYI: sustainable yield index; CV: coefficient of variation. Values are mean ± standard error. Different lowercase letters in the same column of the same item indicate significant differences among treatments (Duncan’s multiple range test, P < 0.05).


下载: 导出CSV
表32017年秋季成熟期各处理对甜玉米//大豆间作系统土壤养分含量的影响
Table3.Effects of treatments on the soil nutrients contents of sweet maize//soybean intercropping system at harvest stage in autumn of 2017
处理
Treatment
pH 有机质
Orgnic matter (g·kg-1)
全氮
Total nitrogen (g·kg-1)
全磷
Total phosphorus (g·kg-1)
全钾
Total potassium (g·kg-1)
碱解氮
Alkaline nitrogen (mg·kg-1)
有效磷
Available phosphorus (mg·kg-1)
速效钾
Available potassium (g·kg-1)
SS-N1 4.95±0.13b 14.14±0.49a 0.72±0.04a 0.95±0.05a 19.80±1.84a 141.32±21.17a 122.33±10.81ab 324.35±35.74a
SS-N2 5.06±0.02b 14.65±0.70a 0.78±0.03a 1.09±0.03a 19.04±2.26a 137.31±32.61a 125.93±2.58a 333.71±24.97a
S2B3-N1 5.64±0.06a 14.36±0.39a 0.72±0.04a 1.04±0.03a 20.38±2.31a 114.71±16.76a 97.27±3.10b 281.47±47.87ab
S2B3-N2 5.48±0.12a 15.45±0.24a 0.77±0.04a 1.00±0.02a 19.10±1.25a 114.00±11.59a 113.73±11.24ab 254.95±39.01ab
S2B4-N1 5.59±0.16a 15.35±0.17a 0.75±0.02a 1.02±0.03a 19.58±1.69a 132.16±18.02a 103.57±8.84ab 250.38±14.67ab
S2B4-N2 5.48±0.05a 14.51±1.43a 0.76±0.06a 1.00±0.11a 19.10±1.22a 114.81±10.42a 106.57±12.58ab 216.49±33.71b
SS:甜玉米单作; S2B3:甜玉米//大豆2:3间作; S2B4:甜玉米//大豆2:4间作; N1:减量施氮; N2:常规施氮。数值为均值±标准误, 同列数据不同小写字母表示不同处理间差异显著(Duncan法, P < 0.05)。SS: sole sweet maize; S2B3: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:3; S2B4: sweet maize//soybean intercropping with sweet maize to soybean line ratio of 2:4; N1: reduced nitrogen dose, 300 kg·hm-2; N2: conventional nitrogen dose, 360 kg·hm-2. Values are mean ± standard error. Different lowercase letters in the same column indicate significant differences among treatments (Duncan’s multiple range test, P < 0.05).


下载: 导出CSV

参考文献(51)
[1]甘阳英, 万忠, 刘蔚楠, 等. 2014年广东甜玉米产业发展形势与对策建议[J].广东农业科学, 2015, 42(11): 11-15 doi: 10.3969/j.issn.1004-874X.2015.11.003
GAN Y Y, WAN Z, LIU W N, et al. Development situation and countermeasures of Guangdong sweet corn industry in 2014[J]. Guangdong Agricultural Science, 2015, 42(11): 11-15 doi: 10.3969/j.issn.1004-874X.2015.11.003
[2]柴强, 胡发龙, 陈桂平.禾豆间作氮素高效利用机理及农艺调控途径研究进展[J].中国生态农业学报, 2017, 25(1): 19-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170104&flag=1
CHAI Q, HU F L, CHEN G P. Research advance in the mechanism and agronomic regulation of high-efficient use of nitrogen in cereal-legume intercropping[J]. Chinese Journal of Eco-Agriculture, 2017, 25(1): 19-26 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170104&flag=1
[3]李永刚, 王丽艳, 张思奇, 等.玉米连作障碍主要因子对苗期玉米生长影响的初步分析[J].东北农业科学, 2017, 42(2): 27-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672038390
LI Y G, WANG L Y, ZHANG S Q, et al. A preliminary analysis of main influencing factors on maize seedling growth under long term continuous maize cropping obstacle[J]. Journal of Northeast Agricultural Sciences, 2017, 42(2): 27-31 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=672038390
[4]高洪军, 彭畅, 张秀芝, 等.长期不同施肥对东北黑土区玉米产量稳定性的影响[J].中国农业科学, 2015, 48(23): 4790-4799 doi: 10.3864/j.issn.0578-1752.2015.23.020
GAO H J, PENG C, ZHANG X Z, et al. Effect of long-term different fertilization on maize yield stability in the Northeast black soil region[J]. Scientia Agricultura Sinica, 2015, 48(23): 4790-4799 doi: 10.3864/j.issn.0578-1752.2015.23.020
[5]刘艳, 汪仁, 邢月华, 等.连续施氮对玉米产量稳定性及其增产潜力的调控[J].土壤通报, 2016, 47(2): 425-429 http://d.old.wanfangdata.com.cn/Periodical/trtb201602026
LIU Y, WANG R, XING Y H, et al. Effects of continuous nitrogen application on yield stability and potential of corn[J]. Chinese Journal of Soil Science, 2016, 47(2): 425-429 http://d.old.wanfangdata.com.cn/Periodical/trtb201602026
[6]魏猛, 张爱君, 诸葛玉平, 等.长期不同施肥对黄潮土区玉米产量稳定性的影响[J].华北农学报, 2016, 31(6): 171-176 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201606027
WEI M, ZHANG A J, ZHUGE Y P, et al. Effect of long-term different fertilization on maize yield stability in yellow fluvo-aquic soil region[J]. Acta Agriculturae Boreali-Sinica, 2016, 31(6): 171-176 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201606027
[7]徐春丽, 谢军, 王珂, 等.西南地区玉米产量对基础地力和施肥的响应[J].中国农业科学, 2018, 51(1): 129-138 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201801012
XU C L, XIE J, WANG K, et al. The response of maize yield to inherent soil productivity and fertilizer in the Southwest[J]. Scientia Agricultura Sinica, 2018, 51(1): 129-138 http://d.old.wanfangdata.com.cn/Periodical/zgnykx201801012
[8]李文学, 孙建好, 李隆, 等.不同施肥处理与间作形式对带田中玉米产量及氮营养状况的影响[J].中国农业科技导报, 2001, 3(3): 36-39 doi: 10.3969/j.issn.1008-0864.2001.03.010
LI W X, SUN J H, LI L, et al. Effects of fertilization and intercrop pattern on yield and N nutrition of maize[J]. Review of China Agricultural Science and Technology, 2001, 3(3): 36-39 doi: 10.3969/j.issn.1008-0864.2001.03.010
[9]陈远学, 李隆, 汤利, 等.小麦/蚕豆间作系统中施氮对小麦氮营养及条锈病发生的影响[J].核农学报, 2013, 27(7): 1020-1028 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201307018
CHEN Y X, LI L, TANG L, et al. Effect of nitrogen addition on nitrogen nutrition and strip rust occurrence of wheat in wheat/fababean intercropping system[J]. Journal of Nuclear Agricultural Sciences, 2013, 27(7): 1020-1028 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=hnxb201307018
[10]李隆.间套作强化农田生态系统服务功能的研究进展与应用展望[J].中国生态农业学报, 2016, 24(4): 403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
LI L. Intercropping enhances agroecosystem services and functioning: Current knowledge and perspectives[J]. Chinese Journal of Eco-Agriculture, 2016, 24(4): 403-415 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2016401&flag=1
[11]JENSEN E S. Intercropping field bean with spring wheat[C]// Proceedings of a Workshop in the CEC Programme of Coordination of Agricultural Research. Germany: University of G ttingen, 1986, 11: 67-75
[12]DAPAAH H K, ASAFU-AGYEI J N, ENNIN S A, et al. Yield stability of cassava, maize, soya bean and cowpea intercrops[J]. The Journal of Agricultural Science, 2003, 140(1): 73-82 doi: 10.1017/S0021859602002770
[13]SNAPP S S, BLACKIE M J, GILBERT R A, et al. Biodiversity can support a greener revolution in Africa[J]. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107(48): 20840-20845 doi: 10.1073/pnas.1007199107
[14]唐艺玲, 管奥湄, 周贤玉, 等.减量施氮与间作大豆对华南地区甜玉米连作农田N2O排放的影响[J].中国生态农业学报, 2015, 23(12): 1529-1535 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151205&flag=1
TANG Y L, GUAN A M, ZHOU X Y, et al. Effect of reduced N application and soybean intercropping on soil N2O emission in sweet corn fields in South China[J]. Chinese Journal of Eco-Agriculture, 2015, 23(12): 1529-1535 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20151205&flag=1
[15]周贤玉, 唐艺玲, 王志国, 等.减量施氮与间作模式对甜玉米AMF侵染和大豆结瘤及作物氮磷吸收的影响[J].中国生态农业学报, 2017, 25(8): 1139-1146 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
ZHOU X Y, TANG Y L, WANG Z G, et al. Effects of reduced nitrogen application and intercropping on sweet corn AMF colonization, soybean nodulation and nitrogen and phosphorus absorption[J]. Chinese Journal of Eco-Agriculture, 2017, 25(8): 1139-1146 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=20170805&flag=1
[16]TANG Y L, YU L L, GUAN A M, et al. Soil mineral nitrogen and yield-scaled soil N2O emissions lowered by reducing nitrogen application and intercropping with soybean for sweet maize production in southern China[J]. Journal of Integrative Agriculture, 2017, 16(11): 2586-2596 doi: 10.1016/S2095-3119(17)61672-1
[17]YU L L, TANG Y L, WANG Z G, et al. Nitrogen-cycling genes and rhizosphere microbial community with reduced nitrogen application in maize/soybean strip intercropping[J]. Nutrient Cycling in Agroecosystems, 2019, 113(1): 35-49 doi: 10.1007/s10705-018-9960-4
[18]王志国, 刘培, 邵宇婷, 等.减量施氮与间作大豆对华南地区甜玉米农田氮平衡的影响[J].中国生态农业学报, 2018, 26(11): 1643-1652 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1105&flag=1
WANG Z G, LIU P, SHAO Y T, et al. Effect of nitrogen reduction and soybean intercropping on nitrogen balance in sweet maize fields in South China[J]. Chinese Journal of Eco-Agriculture, 2018, 26(11): 1643-1652 http://www.ecoagri.ac.cn/zgstny/ch/reader/view_abstract.aspx?file_no=2018-1105&flag=1
[19]鲍士旦.土壤农化分析[M].第3版.北京:中国农业出版, 2000: 49-83
BAO S D. Soil and Agricultural Chemistry Analysis[M]. 3rd ed. Beijing: China Agriculture Press, 2000: 49-83
[20]TARIAH N M, WAHUA T A T. Effects of component populations on yields and land equivalent ratios of intercropped maize and cowpea[J]. Field Crops Research, 1985, 12: 81-89 doi: 10.1016/0378-4290(85)90055-3
[21]BANIK P, BAGCHI D K. A proposed index for assessment of row-replacement intercropping system[J]. Journal of Agronomy and Crop Science, 1996, 177(3): 161-164 doi: 10.1111/j.1439-037X.1996.tb00233.x
[22]WRICKE G. About a method for detecting the ecological spread in field trials[J]. Plant Breeding, 1962, 47: 92-96
[23]REDDY D D, RAO A S, REDDY K S, et al. Yield sustainability and phosphorus utilization in soybean-wheat system on Vertisols in response to integrated use of manure and fertilizer phosphorus[J]. Field Crops Research, 1999, 62(2/3): 181-190 https://www.sciencedirect.com/science/article/pii/S0378429099000192
[24]FRANCIS T R, KANNENBERG L W. Yield stability studies in short-season maize. Ⅰ. A descriptive method for grouping genotypes[J]. Canadian Journal of Plant Science, 1978, 58(4): 1029-1034 doi: 10.4141/cjps78-157
[25]谢如林, 谭宏伟, 周柳强, 等.甘蔗种植体系水土及氮磷养分流失研究[J].西南农业学报, 2013, 26(4): 1572-1577 doi: 10.3969/j.issn.1001-4829.2013.04.056
XIE R L, TAN H W, ZHOU L Q, et al. Water, soil, nitrogen and phosphorus losses from surface runoff in sugarcane cropping system[J]. Southwest China Journal of Agricultural Sciences, 2013, 26(4): 1572-1577 doi: 10.3969/j.issn.1001-4829.2013.04.056
[26]王伟妮, 鲁剑巍, 李银水, 等.当前生产条件下不同作物施肥效果和肥料贡献率研究[J].中国农业科学, 2010, 43(19): 3997-4007 doi: 10.3864/j.issn.0578-1752.2010.19.012
WANG W N, LU J W, LI Y S, et al. Study on fertilization effect and fertilizer contribution rate of different crops at present production conditions[J]. Scientia Agricultura Sinica, 2010, 43(19): 3997-4007 doi: 10.3864/j.issn.0578-1752.2010.19.012
[27]RUSINAMHODZI L, CORBEELS M, NYAMANGARA J, et al. Maize-grain legume intercropping is an attractive option for ecological intensification that reduces climatic risk for smallholder farmers in central Mozambique[J]. Field Crops Research, 2012, 136: 12-22 doi: 10.1016/j.fcr.2012.07.014
[28]贾曼曼, 肖靖秀, 汤利, 等.不同施氮量对小麦蚕豆间作作物产量及其光合特征的影响[J].云南农业大学学报:自然科学, 2017, 32(2): 350-357 http://www.cqvip.com/QK/94499A/201702/671936521.html
JIA M M, XIAO J X, TANG L, et al. Effects of nitrogen supply on yields and photosynthesis characteristics of crops in wheat and broad bean intercropping[J]. Journal of Yunnan Agricultural University: Natural Science, 2017, 32(2): 350-357 http://www.cqvip.com/QK/94499A/201702/671936521.html
[29]林洪鑫, 潘晓华, 袁展汽, 等.施氮和木薯-花生间作对作物产量和经济效益的影响[J].植物营养与肥料学报, 2018, 24(4): 947-958 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201804011
LIN H X, PAN X H, YUAN Z Q, et al. Effects of nitrogen application and cassava-peanut intercropping patterns on crop yields and economic benefit[J]. Journal of Plant Nutrition and Fertilizers, 2018, 24(4): 947-958 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201804011
[30]钱欣, 许和水, 葛军勇, 等.施氮量及间作对燕麦、向日葵生产力及土壤硝态氮累积的影响[J].中国农业大学学报, 2018, 23(3): 1-9 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201803001
QIAN X, XU H S, GE J Y, et al. Effects of nitrogen application rate and intercropping on oat and sunflower productivity and soil nitrate accumulation[J]. Journal of China Agricultural University, 2018, 23(3): 1-9 http://d.old.wanfangdata.com.cn/Periodical/zgnydxxb201803001
[31]姜卉, 赵平, 汤利, 等.云南省不同试验区小麦蚕豆间作的产量优势分析与评价[J].云南农业大学学报, 2012, 27(5): 646-652 doi: 10.3969/j.issn.1004-390X(n).2012.05.005
JIANG H, ZHAO P, TANG L, et al. Analysis and evaluation of yield advantages in wheat and faba bean intercropping system in Yunnan Province[J]. Journal of Yunnan Agricultural University, 2012, 27(5): 646-652 doi: 10.3969/j.issn.1004-390X(n).2012.05.005
[32]郭丽, 王丽英, 张彦才, 等.滴灌水肥一体化下施氮量对小麦氮素吸收及土壤硝态氮含量的影响[J].华北农学报, 2017, 32(3): 207-213 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201703032
GUO L, WANG L Y, ZHANG Y C, et al. Effects of nitrogen amount on nitrogen absorption of wheat and soil NO3--N content under drip fertigation[J]. Acta Agriculturae Boreali-Sinica, 2017, 32(3): 207-213 http://d.old.wanfangdata.com.cn/Periodical/hbnxb201703032
[33]周伟, 吕腾飞, 杨志平, 等.氮肥种类及运筹技术调控土壤氮素损失的研究进展[J].应用生态学报, 2016, 27(9): 3051-3058 http://d.old.wanfangdata.com.cn/Periodical/yystxb201609040
ZHOU W, LYU T F, YANG Z P, et al. Research advances on regulating soil nitrogen loss by the type of nitrogen fertilizer and its application strategy[J]. Chinese Journal of Applied Ecology, 2016, 27(9): 3051-3058 http://d.old.wanfangdata.com.cn/Periodical/yystxb201609040
[34]李祯, 史海滨, 李仙岳, 等.农田硝态氮淋溶规律对不同水氮运筹模式的响应[J].水土保持学报, 2017, 31(1): 310-317 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701051
LI Z, SHI H B, LI X Y, et al. Response of the nitrate nitrogen leaching law to different water-nitrogen management patterns in farmland[J]. Journal of Soil and Water Conservation, 2017, 31(1): 310-317 http://d.old.wanfangdata.com.cn/Periodical/trqsystbcxb201701051
[35]BERZSENYI Z, GY?RFFY B, LAP D. Effect of crop rotation and fertilisation on maize and wheat yields and yield stability in a long-term experiment[J]. European Journal of Agronomy, 2000, 13(2/3): 225-244 doi: 10.1016-S1161-0301(00)00076-9/
[36]STELLUTI M, CALIANDRO A, STELLACCI A M. Influence of previous crop on durum wheat yield and yield stability in a long-term experiment[J]. Italian Journal of Agronomy, 2007, 2(3): 333-340 doi: 10.4081/ija.2007.333
[37]WANJARI R H, SINGH M V, GHOSH P K. Sustainable yield index: An approach to evaluate the sustainability of long-term intensive cropping systems in India[J]. Journal of sustainable Agriculture, 2004, 24(4): 39-56 doi: 10.1300/J064v24n04_05
[38]MANNA M C, SWARUP A, WANJARI R H, et al. Long-term effect of fertilizer and manure application on soil organic carbon storage, soil quality and yield sustainability under sub-humid and semi-arid tropical India[J]. Field Crops Research, 2005, 93(2/3): 264-280 http://cn.bing.com/academic/profile?id=80b59e93550249f9b26739c4dec1571a&encoded=0&v=paper_preview&mkt=zh-cn
[39]ZHU J, VAN DER WERF W, VOS J, et al. High productivity of wheat intercropped with maize is associated with plant architectural responses[J]. Annals of Applied Biology, 2016, 168(3): 357-372 doi: 10.1111/aab.12268
[40]RASEDUZZAMAN M, JENSEN E S. Does intercropping enhance yield stability in arable crop production? A meta-analysis[J]. European Journal of Agronomy, 2017, 91: 25-33 doi: 10.1016/j.eja.2017.09.009
[41]冀保毅, 赵亚丽, 郭海斌, 等.深耕条件下秸秆还田对不同质地土壤肥力的影响[J].玉米科学, 2015, 23(4): 104-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx201504019
JI B Y, ZHAO Y L, GUO H B, et al. Effect of straw retained on the fertility of deep tillage soil[J]. Journal of Maize Sciences, 2015, 23(4): 104-109 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ymkx201504019
[42]王伟, 朱利群, 王文博, 等.秸秆还田地不同水氮条件对水稻产量及土壤肥力的影响[J].水土保持通报, 2015, 35(4): 43-48 http://d.old.wanfangdata.com.cn/Periodical/stbctb201504009
WANG W, ZHU L Q, WANG W B, et al. Effects of different treatments of fertilization and irrigation on rice yield and soil fertility and enzyme activity in wheat straw amendment field[J]. Bulletin of Soil and Water Conservation, 2015, 35(4): 43-48 http://d.old.wanfangdata.com.cn/Periodical/stbctb201504009
[43]高丽秀, 李俊华, 张宏, 等.秸秆还田对滴灌春小麦产量和土壤肥力的影响[J].土壤通报, 2015, 46(5): 1155-1160 http://d.old.wanfangdata.com.cn/Periodical/trtb201505019
GAO L X, LI J H, ZHANG H, et al. Effects of straw return on the spring wheat yield and soil fertility under drip irrigation[J]. Chinese Journal of Soil Science, 2015, 46(5): 1155-1160 http://d.old.wanfangdata.com.cn/Periodical/trtb201505019
[44]薛斌, 殷志遥, 肖琼, 等.稻-油轮作条件下长期秸秆还田对土壤肥力的影响[J].中国农学通报, 2017, 33(7): 134-141 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201707022
XUE B, YIN Z Y, XIAO Q, et al. Effects of long-term straw returning on soil fertility under rice rape rotation system[J]. Chinese Agricultural Science Bulletin, 2017, 33(7): 134-141 http://d.old.wanfangdata.com.cn/Periodical/zgnxtb201707022
[45]袁嫚嫚, 邬刚, 胡润, 等.秸秆还田配施化肥对稻油轮作土壤有机碳组分及产量影响[J].植物营养与肥料学报, 2017, 23(1): 27-35 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201701004
YUAN M M, WU G, HU R, et al. Effects of straw returning plus fertilization on soil organic carbon components and crop yields in rice-rapeseed rotation system[J]. Journal of Plant Nutrition and Fertilizer, 2017, 23(1): 27-35 http://d.old.wanfangdata.com.cn/Periodical/zwyyyflxb201701004
[46]AKKAL-CORFINI N, MORVAN T, MENASSERI-AUBRY S, et al. Nitrogen mineralization, plant uptake and nitrate leaching following the incorporation of (15N) - labeled cauliflower crop residues (Brassica oleracea) into the soil: A 3-year lysimeter study[J]. Plant and Soil, 2010, 328(1/2): 17-26 doi: 10.1007/s11104-009-0104-0
[47]SHAN J, YAN X Y. Effects of crop residue returning on nitrous oxide emissions in agricultural soils[J]. Atmospheric Environment, 2013, 71: 170-175 doi: 10.1016/j.atmosenv.2013.02.009
[48]滕维超, 刘少轩, 曹福亮, 等.油茶大豆间作对盆栽土壤化学和生物性质的影响[J].中南林业科技大学学报, 2013, 33(2): 24-27 http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201302006
TENG W C, LIU S X, CAO F L, et al. Study on chemical and biological properties of potting soil under Camellia oleifera - soybean intercropping[J]. Journal of Central South University of Forestry & Technology, 2013, 33(2): 24-27 http://d.old.wanfangdata.com.cn/Periodical/znlxyxb201302006
[49]PUNYALUE A, JONGJAIDEE J, JAMJOD S, et al. Legume intercropping to reduce erosion, increase soil fertility and grain yield, and stop burning in highland maize production in Northern Thailand[J]. Chiang Mai University Journal of Natural Sciences, 2018, 17(4): 265-274 http://cn.bing.com/academic/profile?id=fa17c6c65ba1446b45884621236ff334&encoded=0&v=paper_preview&mkt=zh-cn
[50]LI Q S, CHEN J, WU L K, et al. Belowground interactions impact the soil bacterial community, soil fertility, and crop yield in maize/peanut intercropping systems[J]. International Journal of Molecular Sciences, 2018, 19(20): 62 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=ijms-19-00622
[51]DUCHENE O, VIAN J F, CELETTE F. Intercropping with legume for agroecological cropping systems: Complementarity and facilitation processes and the importance of soil microorganisms. A review[J]. Agriculture, Ecosystems & Environment, 2017, 240: 148-161 http://cn.bing.com/academic/profile?id=42997ccc1d8019cc879d359d1ab9dd14&encoded=0&v=paper_preview&mkt=zh-cn

相关话题/系统 土壤 生产 作物 图片