HeB.Brian2,
ChenLide1,,
1.爱达荷大学农业和生命科学学院土壤和水分系统系 爱达荷州 83303-1827 美国
2.爱达荷大学工程学院 生物工程系 爱达荷州 83844-2060 美国
详细信息 中图分类号:X713
计量
文章访问数:496
HTML全文浏览量:1
PDF下载量:876
被引次数:0
出版历程
收稿日期:2019-04-03
录用日期:2019-05-20
刊出日期:2019-09-01
Growth and nutrient uptake rates of duckweed cultivated on anaerobically digested dairy manure
Kruger Kevin1,He B.Brian2,
Chen Lide1,,
1. Department of Soil and Water Systems, College of Agricultural and Life Sciences, University of Idaho, ID 83303-1827, USA
2. Department of Biological Engineering, College of Engineering, University of Idaho, ID 83844-2060, USA
More Information
Corresponding author:Chen Lide, E-mail:lchen@uidaho.edu
摘要
HTML全文
图
参考文献
相关文章
施引文献
资源附件
访问统计
摘要
摘要:养分从牛粪到农田的循环利用是养牛场可持续发展、资源利用和环境保护的重点研究内容。利用奶牛场废水种植水生植物被认为是一种有效的废水处理及养分循环的方法。本文研究了3种浮萍[少根紫萍0128(Landoltia punctata 0128)、膨胀浮萍7589(Lemna gibba 7589)和小浮萍9517(Lemna minuta 9517)]在厌氧发酵过的奶牛场废水中种植时的养分吸收和生物质变化。在28 d的测试期间,种植在稀释比例为1:18的厌氧发酵过的牛奶场废水中的少根紫萍01283获得最高的总氮吸收率(11.6%±1.6%),种植在稀释比例为1:27厌氧发酵过的牛奶场废水中的少根紫萍0128获得最高的总磷吸收率(15.4%±4.4%);相应地少根紫萍鲜重的增长率分别为0.11 g·d-1和0.17 g·d-1。3种浮萍中,少根紫萍最具有吸收牛奶场废水氮、磷并获得较高生物质的潜力。
Abstract:Nutrient cycling from flushed dairy manure systems to croplands is a national research priority for sustainable dairy operations, resource utilization, and environmental protection. Cultivating aquatic plants on dairy wastewaters has been considered an effective approach for wastewater treatment/reuse and nutrient recycling. This study aimed to investigate nutrient uptake and biomass production of duckweed strains on dairy wastewater. Three duckweed strains, namely Landoltia punctata 0128, Lemna gibba 7589, and Lemna minuta 9517, were cultivated on anaerobically digested (AD) dairy manure wastewater over a period of 28 days. The highest reduction rate of total nitrogen (TN) was achieved by L. punctata from the AD dairy manure with a dilution ratio of 1:18 (83.1 mg·L-1 TN) at 11.6% (±1.64%). The highest reduction rate of total phosphorus (TP) was achieved by L. punctata from the AD dairy manure with a dilution ratio of 1:27 (6.7 mg·L-1 TP) at 15.4% (±4.4%). The corresponding fresh weight-based growth rate constants of L. punctata were 0.11 g·d-1 and 0.17 g·d-1 for the dilution ratios of 1:18 and 1:27, respectively. It has been shown that, among the three duckweed strains tested in this study, L. punctata has the greatest potential to be cultivated on the medium of diluted AD dairy manure for best N and P reduction and biomass production.
HTML全文

Figure1.Total nitrogen (TN) and total phosphorus (TP) concentrations in diluted anaerobically digested dairy manure with the dilution ratios of 1:18 and 1:27 treated with L. punctata, L. gibba and L. minuta


Figure2.Percent recovery of total nitrogen (TN) and total phosphorus (TP) by the duckweed strains from the anaerobically digested dairy manure with (a) the dilution ratio of 1:18, (b) the dilution ratio of 1:27. Percent recoveries of TN and TP among the three duckweed strains were statistically significant at P ≤ 0.05.


Figure3.Fresh biomass of L. punctata, L. gibba, and L. minuta cultivated on the anaerobically digested dairy manure with the dilution ratios of 1:18 and 1:27. The growth rate constants of both L. punctata and L. gibba were significantly higher than that of L. minuta for both the dilution ratios of 1:18 and 1:27 (P ≤ 0.05).

Table1.Characteristics of anaerobically digested dairy manure tested
Parameter | Mean ± S.D. |
Total nitrogen (mg?L-1) | 1 600.4±245.1 |
Total Kjeldahl nitrogen (mg?L-1) | 1 500.3±243.2 |
NO3-N+NO2-N (mg?L-1) | 100.1±3.2 |
NH3-N (mg?L-1) | 505.0±16.5 |
Total phosphorus (mg?L-1) | 188.0±4.0 |
Ortho-phosphate-phosphorus P (mg?L-1) | 108.8±27.4 |
Chemical oxygen demand (mg?L-1) | 7 679±81 |
Total solids (%) | 1.2±0.0 |
Volatile solids (%) | 53.9±2.3 |
Suspended solids (mg?L-1) | 11 714±1 283 |
pH | 7.97±0.15 |
Electric conductivity (mS?cm-1) | 12.6±0.1 |
Dissolved oxygen (mg?L-1) | 2.6±0.4 |

Table2.Total nitrogen (TN) and total phosphorus (TP) reductions in diluted anaerobically digested dairy manure with the dilution ratios of 1:18 and 1:27 treated with L. punctata, L. gibba and L. minuta at the end of the 28-day test
Treatment | Dilution ratio | TN | TP | |||||
Initial (mg?L-1) | Final (mg?L-1) | Reduction (%) | Initial (mg?L-1) | Final (mg?L-1) | Reduction (%) | |||
L. punctata | 1:18 | 83.1±1.4 | 6.3±0.2 | 92.5±0.3 | 9.9±0.0 | 2.5±0.1 | 74.4±1.3 | |
L. gibba | 83.1±1.4 | 9.3±0.1 | 88.8±0.3 | 9.9±0.0 | 2.7±0.2 | 73.1±2.5 | ||
L. minuta | 83.1±1.4 | 12.5±0.3 | 85.0±1.5 | 9.9±0.0 | 3.3±0.0 | 66.0±0.6 | ||
Control | 83.1±1.4 | 15.9±1.3 | 80.9±0.2 | 9.9±0.0 | 3.6±0.0 | 63.8±0.3 | ||
L. punctata | 1:27 | 55.8±1.4 | 8.6±1.4 | 84.7±2.3 | 6.7±0.0 | 1.0±0.3 | 85.6±4.4 | |
L. gibba | 55.8±1.4 | 11.0±0.6 | 80.2±1.5 | 6.7±0.1 | 1.4±0.6 | 83.0±2.3 | ||
L. minuta | 55.8±1.4 | 12.0±0.3 | 78.5±0.4 | 6.7±0.0 | 1.6±0.1 | 75.7±1.7 | ||
Control | 55.8±1.4 | 12.9±0.1 | 76.9±0.8 | 6.7±0.0 | 2.3±0.6 | 70.2±0.0 | ||
Data in the table are mean ± S.D. (the standard deviation of triplicate samples). |

Table3.Linear equations describing relationships between the duckweed biomass fresh weight and cultivation time. The regression equations were found to significantly fit a linear model (P ≤ 0.05).
Treatment | Dilution ratio of AD manure | Regression equation | R2 |
L. punctata | 1:18 | y=0.11x+0.47 | 0.89 |
L. gibba | y=0.11x+0.57 | 0.87 | |
L. minuta | y=0.04x+0.62 | 0.79 | |
L. punctata | 1:27 | y=0.17x+0.47 | 0.95 |
L. gibba | y=0.19x+0.57 | 0.86 | |
L. minuta | y=0.03x+0.62 | 0.83 |

Table4.Growth rate constants of L. punctata, L. gibba, and L. minuta cultivated on the anaerobically digested dairy manure with the dilution ratios of 1:18 and 1:27. The growth rate constants of both L. punctate and L. gibba were significantly higher (P ≤ 0.05) than that of L. minuta for both the dilution ratios of 1:18 and 1:27.
Treatment | Dilution ratio of AD manure | Growth rate constant (g?d-1) |
L. punctata | 1:18 | 0.11±0.00 |
L. gibba | 0.11±0.01 | |
L. minuta | 0.04±001 | |
L. punctata | 1:27 | 0.17±0.02 |
L. gibba | 0.19±0.07 | |
L. minuta | 0.03±0.00 | |
Data of growth rate constants in the table are mean ± S.D. (the standard deviation of triplicate samples). |

参考文献
ADHIKARI U, HARRIGAN T, REINHOLD D M. 2015. Use of duckweed-based constructed wetlands for nutrient recovery and pollutant reduction from dairy wastewater[J]. Ecological Engineering, 78:6-14 doi: 10.1016/j.ecoleng.2014.05.024 |
AL-NOZAILY F. 2001. Performance and Process Analysis of Duckweed-Covered Sewage Lagoons for High Strength Sewage:The Case of Sana'a, Yemen[M]. Rotterdam:Balkema |
APHA. 2015. Standard Methods for the Examination of Water and Wastewater[M]. 21st ed. Washington, DC:American Public Health Association |
CHEN L D, GRAY C W, NEIBLING H, et al. 2014. On-farm comparison of two dairy manure application methods in terms of ammonia and odor emissions and costs[J]. Applied Engineering in Agriculture, 30(5):805-813 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=04cd4ad4dc504f8a015e1a8c7fa3536b |
CHENG J J, STOMP A M. 2009. Growing duckweed to recover nutrients from wastewaters and for production of fuel ethanol and animal feed[J]. Clean-Soil Air Water, 37(1):17-26 doi: 10.1002/clen.200800210 |
CHENG J Y, BERGMANN B A, CLASSEN J J, et al. 2002. Nutrient recovery from swine lagoon water by Spirodela punctata[J]. Bioresource Technology, 81(1):81-85 doi: 10.1016/S0960-8524(01)00098-0 |
Hach Company. 2005. DR5000 Spectrophotometer: Procedures Manual[R]. Germany: Hatch Company |
IDA. 2018. Dairy's economic impact[EB/OL].[2019-03-12]. https://www.idahodairymens.org/economic-impact/ |
IDEQ. 2018, Concentrated Animal Feeding Operations[M/OL].[2019-03-12]. http://www.deq.idaho.gov/water-quality/wastewater/cafos/ |
LEYTEM A B, DUNGAN R S, BJORNEBERG D L, et al. 2013. Greenhouse gas and ammonia emissions from an open-freestall dairy in southern idaho[J]. Journal of Environmental Quality, 42(1):10-20 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=d29bb7c42adf03c9ce061530ee39ee33 |
MOHEDANO R A, COSTA R H R, TAVARES F A, et al. 2012. High nutrient removal rate from swine wastes and protein biomass production by full-scale duckweed ponds[J]. Bioresource Technology, 112:98-104 doi: 10.1016/j.biortech.2012.02.083 |
RUSOFF L L, BLAKENEY E W, CULLEY D D. 1980. Duckweeds (Lemnaceae family):A potential source of protein and amino acids[J]. Journal of Agricultural and Food Chemistry, 28(4):848-850 http://d.old.wanfangdata.com.cn/NSTLQK/NSTL_QKJJ0210026660/ |
SOOKNAH R D, WILKIE A C. 2004. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater[J]. Ecological Engineering, 22(1):27-42 http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=62a23e43f5b25e5c889f0fd320b02eea |
TOYAMA T, HANAOKA T, TANAKA Y, et al. 2018. Comprehensive evaluation of nitrogen removal rate and biomass, ethanol, and methane production yields by combination of four major duckweeds and three types of wastewater effluent[J]. Bioresource Technology, 250:464-473 doi: 10.1016/j.biortech.2017.11.054 |
USDA, NASS. 2018 State agriculture overview[EB/OL].[2019-03-12]. https://www.nass.usda.gov/Quick_Stats/Ag_Overview/stateOverview.php?state=IDAHO |
XU J L, CHENG J J, STOMP A M. 2010. Growing spirodela polyrrhiza in swine wastewater for the production of animal feed and fuel ethanol:A pilot study[J]. Clean-Soil Air Water, 40(7):760-765 http://cn.bing.com/academic/profile?id=815a70c7db3469c8e85c7668218ac89f&encoded=0&v=paper_preview&mkt=zh-cn |
ZHAO Z, SHI H J, LIU Y, et al. The influence of duckweed species diversity on biomass productivity and nutrient removal efficiency in swine wastewater[J]. Bioresource Technology, 2014, 167:383-389 doi: 10.1016/j.biortech.2014.06.031 |
ZIEGLER P, ADELMANN K, ZIMMER S, et al. Relative in vitro growth rates of duckweeds (Lemnaceae)-The most rapidly growing higher plants[J]. Plant Biology, 2015, 17(S1):33-41 |