删除或更新信息,请邮件至freekaoyan#163.com(#换成@)

水培营养液作为贮热介质的热传导规律分析

本站小编 Free考研考试/2022-01-01

马宇婧,
温祥珍,,
杜莉雯,
李亚灵
山西农业大学园艺学院 太谷 030801
基金项目: 国家自然科学基金重点项目61233006
山西省煤基重点科技攻关项目FT201402-05

详细信息
作者简介:马宇婧, 主要研究方向为设施园艺。E-mail:563264114@qq.com
通讯作者:温祥珍, 主要从事设施园艺方面的研究。E-mail:330821473@qq.com
中图分类号:S625.1

计量

文章访问数:514
HTML全文浏览量:1
PDF下载量:545
被引次数:0
出版历程

收稿日期:2018-04-09
录用日期:2018-08-13
刊出日期:2018-12-01

Heat conduction law of hydroponic nutrient solution as heat storage medium

MA Yujing,
WEN Xiangzhen,,
DU Liwen,
LI Yaling
School of Horticulture, Shanxi Agricultural University, Taigu 030801, China
Funds: the National Natural Science Foundation of China61233006
Shanxi Coal-based Key Scientific and Technological ProjectsFT201402-05

More Information
Corresponding author:WEN Xiangzhen, E-mail: 330821473@qq.com


摘要
HTML全文
(7)(2)
参考文献(25)
相关文章
施引文献
资源附件(0)
访问统计

摘要
摘要:为掌握水培营养液的热传导变化规律,探讨叶菜生产系统营养液作为贮热介质的蓄热保温性能,在山西农业大学设施农业工程研究所叶菜生产系统中使用SH-16路温度巡检仪,测定多孔定植板条件下系统内不同深度(0 cm、5 cm、10 cm、15 cm)营养液的温度变化。试验结果表明:不同深度营养液温度变化显著不同,表层变幅最大,越往深层变幅越小;秋季营养液各深度最高温分别出现在14:00、16:00、17:40、20:00,并随着营养液深度的增加而快速降低。根据各深度日较差的变化幅度,将营养液划分为热交换层(>3℃)、热缓冲层(1~3℃)和热稳定层(0~1℃),分别位于液面表层0~5 cm、5~10 cm和10~15 cm。叶菜生产系统营养液深度为21.5 cm时,不同层次日较差变化符合对数关系:y=-2.619lnx+4.215 2,即液面以下20 cm处日较差为0℃。上述结果表明能量在营养液中是逐层进行传导的。
关键词:营养液/
叶菜生产系统/
贮热介质/
热传导/
能量
Abstract:In order to grasp the characteristics of heat transfer of hydroponic nutrient solution as heat storage medium and the related heat storage and preservation performance, nutrient solutions of leaf vegetable production systems were used for experimentation. The experiment was conducted at the solar greenhouse of Agricultural Engineering Institute of Shanxi Agricultural University. In this study, SH-16 road temperature inspection was used in leaf vegetable production systems and sensor elements placed at several different depths of different positions to monitor solution temperature. The regulation of temperature change of nutrient solutions in the system under porous planting plates were discussed. The experimental results showed that temperature change in nutrient solution at different depths were significantly different. The largest amplitude of temperature variation of nutrition solutions was at surface layer. The deeper the nutrient solution, the smaller was the variation. The highest temperature of nutrient solution in autumn decreased rapidly with increasing nutrient solution depth, and happened at 14:00, 16:00, 17:40 and 20:00 for the solution depths of 0 cm, 5 cm, 10 cm and 15 cm respectively. Based on the daily range of temperature at different depths, nutrient solutions were divided into three temperature layers-heat exchange layer (daily range of temperature > 3℃), heat buffer layer (daily range of temperature of 1-3℃) and heat stability layer (daily range of temperature at 0-1℃), which were located in the solution layers of 0-5 cm, 5-10 cm and 10-15 cm, respectively. When the nutrient solution depth of leaf vegetable production system was 21.5 cm, the relationship between daily temperature difference and solution depth (0 cm, 5 cm, 10 cm, 15 cm were expressed as 1, 2, 3 and 4 in the function) was described with the logarithmic function y=-2.619lnx + 4.215 2. That indicated that daily temperature difference at 20 cm below solution surface was 0℃. The above results indicated that energy was conducted on a layer-by-layer basis in the nutrient solution of hydroponic system.
Key words:Nutrient solution/
Leaf vegetable production system/
Heat storage medium/
Heat conduction/
Energy

HTML全文


图1叶菜生产系统剖面图
Figure1.Cutaway of leaf vegetable production system


下载: 全尺寸图片幻灯片


图2营养液不同深度(a)和不同位置(b)测试位点截面图
Figure2.Cross-sections of test sites in different depths (a) and different positions (b) of nutrient solution


下载: 全尺寸图片幻灯片


图3不同位点不同深度营养液的温度日变化
图中数据点为2017年11月2—26日共25 d的平均值。Each data point in the figure was the average of 25 days from November 2 to 26, 2017.
Figure3.Daily changes in temperature at different sites and different depths of nutrient solution


下载: 全尺寸图片幻灯片


图4不同深度营养液的温度日变化
图中每个数据点为3个位点2017年11月2—26日共25 d的平均值。Each data point in the figure was the average of 3 sites from November 2 to 26, 2017 for a total of 25 days.
Figure4.Diurnal change of temperature of nutrient solution at different depths


下载: 全尺寸图片幻灯片


图5一天中不同深度营养液能量交换比率变化
能量交换比率=|T-T|/(|T0-T5|+|T5-T10|+|T10-T15|)×100%, T为温度, 下标的数据为营养液深度。Energy exchange rate = |Tshallow-Tdepth|/ (|T0-T5| + |T5-T10| +| T10- T15|) × 100%, in which T was temperature, the subscripts were depths of nutrient solution.
Figure5.Change of energy exchange ratios at different depths of nutrient solution in one day


下载: 全尺寸图片幻灯片


图6不同测定日期(月-日)不同深度营养液日较差变化趋势
图中每个数据点为2017年11月2—26日每日最高温与最低温的差。The daily difference of temperature in the figure was difference between the highest and lowest temperatures in every day from November 2 to 26, 2017.
Figure6.Diurnal temperature differences at different depths of nutrient solution on different measuring dates (month-day)


下载: 全尺寸图片幻灯片


图7不同深度营养液系统热量交换的速度变化
热量损失速率=(T-T)×6 787.8 kJ /5 cm。Heat loss rate = (Tshallow-Tdepth) ×6 787.8 kJ / 5 cm. T is temperature.
Figure7.Changes in the speed of system heat exchange at different depths of nutrient solution


下载: 全尺寸图片幻灯片

表1各深度营养液平均温度和极端温度情况
Table1.Average temperature and extreme temperature of nutrient solution at various depths
液层
Liquid layer
(cm)
平均值
Average
(℃)
最大值
Maximum
(℃)
最小值
Minimum
(℃)
极差
Extreme
(℃)
标准差
Standard deviation
(℃)
变异系数
Coefficient of variation
(%)
平均温
Average temperature
0 14.1 17.1 10.8 6.2 2.15 15.26
5 13.7 16.4 10.6 5.8 2.04 14.83
10 13.4 15.9 10.3 5.6 1.97 14.75
15 13.3 15.6 10.3 5.4 1.93 14.54
最高温
Highest temperature
0 17.0 20.7 13.2 7.5 2.54 14.99
5 15.0 18.1 11.6 6.5 2.19 14.61
10 13.9 16.6 10.8 5.7 2.03 14.54
15 13.6 15.9 10.6 5.3 1.95 14.33
最低温
Lowest temperature
0 12.6 15.0 9.5 5.6 1.96 15.58
5 12.8 15.3 9.8 5.5 1.92 14.96
10 12.8 15.1 9.7 5.4 1.92 15.01
15 12.8 15.2 9.8 5.4 1.92 15.01
日较差
Daily range
0 4.4 5.8 1.7 4.1 0.98 22.57
5 2.2 2.9 1.0 2.0 0.51 23.42
10 1.2 1.5 0.6 0.9 0.22 18.69
15 0.8 1.1 0.6 0.5 0.12 14.26
表中数据根据2017年11月2—26日每天平均温、最高温、最低温、日较差求出各自的平均值、最大值、最小值、极值以及标准差和变异系数。其中标准差通过STDEV函数计算而得, 变异系数CV=标准差/平均值×100%[21]。The data in the table was based on the daily average temperature, the highest temperature, the lowest temperature, and the daily range from November 2 to 26, 2017. The standard deviation was calculated by the STDEV function. Coefficient of variation = standard deviation / mean value × 100%[21].


下载: 导出CSV
表2不同深度营养液昼夜温差的频度
Table2.Frequency of day-night temperature difference at different depths of nutrient solution
d
营养液深度
Nutrient depth (cm)
温度范围Temperature range (℃)
0~1 1~2 2~3 3~4 4~5 5~6
0 0 1 1 5 11 7
5 2 6 17 0 0 0
10 5 20 0 0 0 0
15 23 2 0 0 0 0
表中数据来自各测点2017年11月2—26日的日较差。The data in the table were in each survey point from November 2 to 26, 2017.


下载: 导出CSV

参考文献(25)
[1]郭世荣.无土栽培学[M].北京:中国农业出版社, 2003: 125-127
GUO S R. Soil Free Culture[M]. Beijing: China Agricultural Press, 2003: 125-127
[2]冯玉龙, 姜淑梅, 邵侠.根系温度对苋菜生长及光合特性的影响[J].植物研究, 2000, 20(2): 180-185 doi: 10.3969/j.issn.1673-5102.2000.02.010
FENG Y L, JIANG S M, SHAO X. The effect of root system temperature on growth and photosynthetic characteristics in Amaranthus tricolor[J]. Bulletin of Botanical Research, 2000, 20(2): 180-185 doi: 10.3969/j.issn.1673-5102.2000.02.010
[3]冯玉龙, 刘恩举, 孟庆超.根系温度对植物的影响(Ⅱ)——根温对植物代谢的影响[J].东北林业大学学报, 1995, 23(4): 94-99 http://www.cnki.com.cn/Article/CJFDTotal-DBLY504.014.htm
FENG Y L, LIU E J, MENG Q C. Influence of temperature of root system on plant (Ⅱ) — Influence of root temperature on plant metabolism[J]. Journal of Northeast Forestry University, 1995, 23(4): 94-99 http://www.cnki.com.cn/Article/CJFDTotal-DBLY504.014.htm
[4]梁建生, 张建华, 曹显祖.根系环境温度变化对根系吸水和叶片蒸腾的影响[J].植物学报, 1998, 40(12): 1152-1158 doi: 10.3321/j.issn:1672-9072.1998.12.011
LIANG J S, ZHANG J H, CAO X Z. Effect of changes of temperature around roots in relation to water uptake by roots and leaf transpiration[J]. Acta Botanica Sinica, 1998, 40(12): 1152-1158 doi: 10.3321/j.issn:1672-9072.1998.12.011
[5]鲍恩财, 曹晏飞, 邹志荣, 等.节能日光温室蓄热技术研究进展[J].农业工程学报, 2018, 34(6): 1-14 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201806001
BAO E C, CAO Y F, ZOU Z R, et al. Research progress of thermal storage technology in energy-saving solar greenhouse[J]. Transactions of the CSAE, 2018, 34(6): 1-14 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201806001
[6]张义, 杨其长, 方慧.日光温室水幕帘蓄放热系统增温效应试验研究[J].农业工程学报, 2012, 28(4): 188-193 doi: 10.3969/j.issn.1002-6819.2012.04.031
ZHANG Y, YANG Q C, FANG H. Research on warming effect of water curtain system in Chinese solar greenhouse[J]. Transactions of the CSAE, 2012, 28(4): 188-193 doi: 10.3969/j.issn.1002-6819.2012.04.031
[7]方慧, 杨其长, 梁浩, 等.日光温室浅层土壤水媒蓄放热增温效果[J].农业工程学报, 2011, 27(5): 258-263 doi: 10.3969/j.issn.1002-6819.2011.05.046
FANG H, YANG Q C, LIANG H, et al. Experiment of temperature rising effect by heat release and storage with shallow water in solar greenhouse[J]. Transactions of the CSAE, 2011, 27(5): 258-263 doi: 10.3969/j.issn.1002-6819.2011.05.046
[8]方慧, 杨其长, 张义.基于热泵的日光温室浅层土壤水媒蓄放热装置试验[J].农业工程学报, 2012, 28(20): 210-216 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220030
FANG H, YANG Q C, ZHANG Y. Experimental study on shallow soil assisted heat release-storage system with water-water heat pump in solar greenhouse[J]. Transactions of the CSAE, 2012, 28(20): 210-216 http://d.old.wanfangdata.com.cn/Periodical/nygcxb201220030
[9]方慧, 张义, 杨其长, 等.日光温室金属膜集放热装置增温效果的性能测试[J].农业工程学报, 2015, 31(15): 177-182 doi: 10.11975/j.issn.1002-6819.2015.15.024
FANG H, ZHANG Y, YANG Q C, et al. Performance testing on warming effect of heat storage-release metal film in Chinese solar greenhouse[J]. Transactions of the CSAE, 2015, 31(15): 177-182 doi: 10.11975/j.issn.1002-6819.2015.15.024
[10]孙维拓, 杨其长, 方慧, 等.主动蓄放热-热泵联合加温系统在日光温室的应用[J].农业工程学报, 2013, 29(19): 168-177 doi: 10.3969/j.issn.1002-6819.2013.19.021
SUN W T, YANG Q C, FANG H, et al. Application of heating system with active heat storage-release and heat pump in solar greenhouse[J]. Transactions of the CSAE, 2013, 29(19): 168-177 doi: 10.3969/j.issn.1002-6819.2013.19.021
[11]马承伟, 姜宜琛, 程杰宇, 等.日光温室钢管屋架管网水循环集放热系统的性能分析与试验[J].农业工程学报, 2016, 32(21): 209-216 doi: 10.11975/j.issn.1002-6819.2016.21.028
MA C W, JIANG Y C, CHENG J Y, et al. Analysis and experiment of performance on water circulation system of steel pipe network formed by roof truss for heat collection and release in Chinese solar greenhouse[J]. Transactions of the CSAE, 2016, 32(21): 209-216 doi: 10.11975/j.issn.1002-6819.2016.21.028
[12]张宇雷, 吴凡, 管崇武, 等.环渤海地区热能资源分布及海水养殖水体调温模式研究[J].江苏农业科学, 2014, 42(6): 229-231 doi: 10.3969/j.issn.1002-1302.2014.06.080
ZHANG Y L, WU F, GUAN C W, et al. Study on distribution of energy resources in Bohai rim region and thermostat mode of mariculture water[J]. Jiangsu Agricultural Sciences, 2014, 42(6): 229-231 doi: 10.3969/j.issn.1002-1302.2014.06.080
[13]周长吉.中国日光温室结构的改良与创新(二)——基于主动储放热理论的墙体改良与创新[J].中国蔬菜, 2018, (3): 1-8 http://d.old.wanfangdata.com.cn/Periodical/zgsc201803001
ZHOU C J. Improvement and innovation of greenhouse structure in China (two) — Wall improvement and innovation based on the theory of active storage and heat release[J]. China Vegetables, 2018, (3): 1-8 http://d.old.wanfangdata.com.cn/Periodical/zgsc201803001
[14]马宇婧, 温祥珍, 杜莉雯, 等.一种叶菜生产系统的研制[J].农业工程技术, 2018, 38(7): 49-51 http://d.old.wanfangdata.com.cn/Periodical/nongygcjs201807008
MA Y J, WEN X Z, DU L W, et al. Development of a leaf vegetable intelligent production system[J]. Agricultural Engineering Technology, 2018, 38(7): 49-51 http://d.old.wanfangdata.com.cn/Periodical/nongygcjs201807008
[15]ZHU S, DELTOUR J, WANG S. Modeling the thermal characteristics of greenhouse pond systems[J]. Aquacultural Engineering, 1998, 18(3): 201-217 doi: 10.1016/S0144-8609(98)00031-4
[16]杜莉雯, 温祥珍, 马宇婧, 等.叶菜生产系统中定植板覆盖率对环境热效应的影响[J].山西农业科学, 2018, 46(6): 957-961 doi: 10.3969/j.issn.1002-2481.2018.06.22
DU L W, WEN X Z, MA Y J, et al. Effects of planted plates coverage on the environmental thermal in leaf vegetable production system[J]. Journal of Shanxi Agricultural Sciences, 2018, 46(6): 957-961 doi: 10.3969/j.issn.1002-2481.2018.06.22
[17]温祥珍, 李亚灵.日光温室砖混结构墙体内冬春季温度状况[J].山西农业大学学报:自然科学版, 2009, 29(6): 525-528 http://d.old.wanfangdata.com.cn/Periodical/sxnydxxb200906010
WEN X Z, LI Y L. Analysis of temperature within north composite wall of solar greenhouse[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2009, 29(6): 525-528 http://d.old.wanfangdata.com.cn/Periodical/sxnydxxb200906010
[18]杨艳红, 李亚灵, 马宇婧, 等.日光温室北侧墙体内部冬春季的温度日较差变化分析[J].山西农业大学学报:自然科学版, 2017, 37(8): 594-599 http://d.old.wanfangdata.com.cn/Periodical/sxnydxxb201708011
YANG Y H, LI Y L, MA Y J, et al. Analysis of the daily temperature differences inside north wall in solar greenhouse during winter and spring[J]. Journal of Shanxi Agricultural University: Natural Science Edition, 2017, 37(8): 594-599 http://d.old.wanfangdata.com.cn/Periodical/sxnydxxb201708011
[19]史宇亮.日光温室不同厚度土墙蓄放热特性研究[D].泰安: 山东农业大学, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10434-1017077326.htm
SHI Y L. Study on heat storage and release properties of different thickness soil wall for solar greenhouse[D]. Tai'an: Shandong Agricultural University, 2017 http://cdmd.cnki.com.cn/Article/CDMD-10434-1017077326.htm
[20]易东海.日光温室土质墙体温度特性研究[D].郑州: 河南农业大学, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275353.htm
YI D H. Research of temperature in soil wall and solar greenhouse[D]. Zhengzhou: Henan Agricultural University, 2011 http://cdmd.cnki.com.cn/Article/CDMD-10466-1012275353.htm
[21]明道绪.田间试验与统计分析[M].北京:科学出版社, 2005
MING D X. Field Trials and Statistical Analysis[M]. Beijing: Science Press, 2005
[22]百度百科.日较差[EB/OL]. https://baike.baidu.com/item/日较差/2601748
Baidu Encyclopedia. Diurnal range[EB/OL]. https://baike.baidu.com/item/diurnalrange/2601748
[23]朱开玲, 段淑辉, 李良勇, 等.烤烟漂浮育苗设施系统的温热特性及其对烟苗生长的影响[J].湖南农业科学, 2015, (8): 122-126 http://d.old.wanfangdata.com.cn/Periodical/hunannykx201508037
ZHU K L, DUAN S H, LI L Y, et al. Heating characteristics and their influence on tobacco seedlings growth within flue-cured tobacco floating seedling facility system[J]. Hunan Agricultural Sciences, 2015, (8): 122-126 http://d.old.wanfangdata.com.cn/Periodical/hunannykx201508037
[24]潘文杰, 姜超英, 李继新.漂浮系统热量状况及对烟苗素质的影响[J].中国农业气象, 2003, 24(4): 58-61 doi: 10.3969/j.issn.1000-6362.2003.04.018
PAN W J, JIANG C Y, LI J X. Influence of temperature conditions of float system on quality of flue-cured tobacco seedlings[J]. Chinese Journal of Agrometeorology, 2003, 24(4): 58-61 doi: 10.3969/j.issn.1000-6362.2003.04.018
[25]单沛祥, 徐发华.烤烟漂浮育苗热量状况分析初报[J].中国烟草科学, 2000, (2): 20-22 doi: 10.3969/j.issn.1007-5119.2000.02.006
SHAN P X, XU F H. Preliminary analysis of thermal status of flue-cured tobacco seedling production with float system[J]. Chinese Tobacco Science, 2000, (2): 20-22 doi: 10.3969/j.issn.1007-5119.2000.02.006

相关话题/系统 生产 图片 数据 交换